These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 15654875)
1. A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding. Amblar M; Arraiano CM FEBS J; 2005 Jan; 272(2):363-74. PubMed ID: 15654875 [TBL] [Abstract][Full Text] [Related]
2. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. Matos RG; Barbas A; Arraiano CM Biochem J; 2009 Sep; 423(2):291-301. PubMed ID: 19630750 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the functional domains of Escherichia coli RNase II. Amblar M; Barbas A; Fialho AM; Arraiano CM J Mol Biol; 2006 Jul; 360(5):921-33. PubMed ID: 16806266 [TBL] [Abstract][Full Text] [Related]
4. Biochemical characterization of the RNase II family of exoribonucleases from the human pathogens Salmonella typhimurium and Streptococcus pneumoniae. Domingues S; Matos RG; Reis FP; Fialho AM; Barbas A; Arraiano CM Biochemistry; 2009 Dec; 48(50):11848-57. PubMed ID: 19863111 [TBL] [Abstract][Full Text] [Related]
5. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Frazão C; McVey CE; Amblar M; Barbas A; Vonrhein C; Arraiano CM; Carrondo MA Nature; 2006 Sep; 443(7107):110-4. PubMed ID: 16957732 [TBL] [Abstract][Full Text] [Related]
6. Characterizing ribonucleases in vitro examples of synergies between biochemical and structural analysis. Arraiano CM; Barbas A; Amblar M Methods Enzymol; 2008; 447():131-60. PubMed ID: 19161842 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for processivity and single-strand specificity of RNase II. Zuo Y; Vincent HA; Zhang J; Wang Y; Deutscher MP; Malhotra A Mol Cell; 2006 Oct; 24(1):149-56. PubMed ID: 16996291 [TBL] [Abstract][Full Text] [Related]
8. Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA. Matos RG; Barbas A; Gómez-Puertas P; Arraiano CM Proteins; 2011 Jun; 79(6):1853-67. PubMed ID: 21465561 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro. Sun W; Li G; Nicholson AW Biochemistry; 2004 Oct; 43(41):13054-62. PubMed ID: 15476399 [TBL] [Abstract][Full Text] [Related]
10. The role of the S1 domain in exoribonucleolytic activity: substrate specificity and multimerization. Amblar M; Barbas A; Gomez-Puertas P; Arraiano CM RNA; 2007 Mar; 13(3):317-27. PubMed ID: 17242308 [TBL] [Abstract][Full Text] [Related]
11. The precursor tRNA 3'-CCA interaction with Escherichia coli RNase P RNA is essential for catalysis by RNase P in vivo. Wegscheid B; Hartmann RK RNA; 2006 Dec; 12(12):2135-48. PubMed ID: 17135488 [TBL] [Abstract][Full Text] [Related]
12. The role of endoribonucleases in the regulation of RNase R. Cairrão F; Arraiano CM Biochem Biophys Res Commun; 2006 May; 343(3):731-7. PubMed ID: 16563345 [TBL] [Abstract][Full Text] [Related]
13. RhlB helicase rather than enolase is the beta-subunit of the Escherichia coli polynucleotide phosphorylase (PNPase)-exoribonucleolytic complex. Lin PH; Lin-Chao S Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16590-5. PubMed ID: 16275923 [TBL] [Abstract][Full Text] [Related]
14. Identification of temperature-sensitive mutations and characterization of thermolabile RNase II variants. Reis FP; Bárria C; Gomez-Puertas P; Gomes CM; Arraiano CM FEBS Lett; 2019 Feb; 593(3):352-360. PubMed ID: 30536706 [TBL] [Abstract][Full Text] [Related]
15. "Zn-link": a metal-sharing interface that organizes the quaternary structure and catalytic site of the endoribonuclease, RNase E. Callaghan AJ; Redko Y; Murphy LM; Grossmann JG; Yates D; Garman E; Ilag LL; Robinson CV; Symmons MF; McDowall KJ; Luisi BF Biochemistry; 2005 Mar; 44(12):4667-75. PubMed ID: 15779893 [TBL] [Abstract][Full Text] [Related]
16. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product. Barbas A; Matos RG; Amblar M; López-Viñas E; Gomez-Puertas P; Arraiano CM J Biol Chem; 2008 May; 283(19):13070-6. PubMed ID: 18337246 [TBL] [Abstract][Full Text] [Related]
17. The Helicase Activity of Ribonuclease R Is Essential for Efficient Nuclease Activity. Hossain ST; Malhotra A; Deutscher MP J Biol Chem; 2015 Jun; 290(25):15697-15706. PubMed ID: 25931119 [TBL] [Abstract][Full Text] [Related]
18. RNase P of the Cyanophora paradoxa cyanelle: a plastid ribozyme. Li D; Willkomm DK; Schön A; Hartmann RK Biochimie; 2007 Dec; 89(12):1528-38. PubMed ID: 17881113 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing. Zuo Y; Wang Y; Malhotra A Structure; 2005 Jul; 13(7):973-84. PubMed ID: 16004870 [TBL] [Abstract][Full Text] [Related]
20. Structural insights into RNA unwinding and degradation by RNase R. Chu LY; Hsieh TJ; Golzarroshan B; Chen YP; Agrawal S; Yuan HS Nucleic Acids Res; 2017 Nov; 45(20):12015-12024. PubMed ID: 29036353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]