These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15654875)

  • 21. Determination of key residues for catalysis and RNA cleavage specificity: one mutation turns RNase II into a "SUPER-ENZYME".
    Barbas A; Matos RG; Amblar M; López-Viñas E; Gomez-Puertas P; Arraiano CM
    J Biol Chem; 2009 Jul; 284(31):20486-98. PubMed ID: 19458082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of YihS in complex with D-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase.
    Itoh T; Mikami B; Hashimoto W; Murata K
    J Mol Biol; 2008 Apr; 377(5):1443-59. PubMed ID: 18328504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensing of 5' monophosphate by Escherichia coli RNase G can significantly enhance association with RNA and stimulate the decay of functional mRNA transcripts in vivo.
    Jourdan SS; McDowall KJ
    Mol Microbiol; 2008 Jan; 67(1):102-15. PubMed ID: 18078441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-function relationships in Escherichia coli adenylate cyclase.
    Linder JU
    Biochem J; 2008 Nov; 415(3):449-54. PubMed ID: 18620542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Junction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA-DNA junction to the RNA/DNA heteroduplex.
    Ohtani N; Tomita M; Itaya M
    Biochem J; 2008 Jun; 412(3):517-26. PubMed ID: 18318663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate recognition and catalysis by the exoribonuclease RNase R.
    Vincent HA; Deutscher MP
    J Biol Chem; 2006 Oct; 281(40):29769-75. PubMed ID: 16893880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNase II: the finer details of the Modus operandi of a molecular killer.
    Arraiano CM; Matos RG; Barbas A
    RNA Biol; 2010; 7(3):276-81. PubMed ID: 20484980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel endoribonuclease, RNase LS, in Escherichia coli.
    Otsuka Y; Yonesaki T
    Genetics; 2005 Jan; 169(1):13-20. PubMed ID: 15677746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The processive reaction mechanism of ribonuclease II.
    Cannistraro VJ; Kennell D
    J Mol Biol; 1994 Nov; 243(5):930-43. PubMed ID: 7966309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and biological analysis of the metal sites of Escherichia coli hydrogenase accessory protein HypB.
    Dias AV; Mulvihill CM; Leach MR; Pickering IJ; George GN; Zamble DB
    Biochemistry; 2008 Nov; 47(46):11981-91. PubMed ID: 18942856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multiple mutant of Escherichia coli lacking the exoribonucleases RNase II, RNase D, and RNase BN.
    Zaniewski R; Petkaitis E; Deutscher MP
    J Biol Chem; 1984 Oct; 259(19):11651-3. PubMed ID: 6207170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the Saccharomyces cerevisiae exosome architecture and of the RNA binding activity of Rrp40p.
    Luz JS; Tavares JR; Gonzales FA; Santos MC; Oliveira CC
    Biochimie; 2007 May; 89(5):686-91. PubMed ID: 17391830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homologous and heterologous expression of RNase III from Lactococcus lactis.
    Amblar M; Viegas SC; López P; Arraiano CM
    Biochem Biophys Res Commun; 2004 Oct; 323(3):884-90. PubMed ID: 15381083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member.
    Parducci RE; Cabrera R; Baez M; Guixé V
    Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The roles of individual domains of RNase R in substrate binding and exoribonuclease activity. The nuclease domain is sufficient for digestion of structured RNA.
    Vincent HA; Deutscher MP
    J Biol Chem; 2009 Jan; 284(1):486-494. PubMed ID: 19004832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The conserved asparagine in the HNH motif serves an important structural role in metal finger endonucleases.
    Huang H; Yuan HS
    J Mol Biol; 2007 May; 368(3):812-21. PubMed ID: 17368670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and expression of the cathepsin F-like cysteine protease gene in Escherichia coli and its characterization.
    Joo HS; Koo KB; Park KI; Bae SH; Yun JW; Chang CS; Choi JW
    J Microbiol; 2007 Apr; 45(2):158-67. PubMed ID: 17483802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNase R affects gene expression in stationary phase: regulation of ompA.
    Andrade JM; Cairrão F; Arraiano CM
    Mol Microbiol; 2006 Apr; 60(1):219-28. PubMed ID: 16556233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stabilization of E. coli Ribonuclease HI by the 'stability profile of mutant protein' (SPMP)-inspired random and non-random mutagenesis.
    Haruki M; Saito Y; Ota M; Nishikawa K; Kanaya S
    J Biotechnol; 2006 Jul; 124(3):512-22. PubMed ID: 16545882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.