These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15655995)

  • 1. SCR performance on a hydrogen reformer furnace.
    Kunz RG
    J Air Waste Manag Assoc; 1998 Jan; 48(1):26-34. PubMed ID: 15655995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.
    Lee CW; Srivastava RK; Ghorishi SB; Hastings TW; Stevens FM
    J Air Waste Manag Assoc; 2004 Dec; 54(12):1560-6. PubMed ID: 15648394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.
    Lee CW; Serre SD; Zhao Y; Lee SJ; Hastings TW
    J Air Waste Manag Assoc; 2008 Apr; 58(4):484-93. PubMed ID: 18422035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of NOx control processes on mercury speciation in utility flue gas.
    Richardson C; Machalek T; Miller S; Dene C; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):941-7. PubMed ID: 12184693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst.
    Yu Y; Li Y; Zhang X; Deng H; He H; Li Y
    Environ Sci Technol; 2015 Jan; 49(1):481-8. PubMed ID: 25485626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promotional effect of rare earth-doped manganese oxides supported on activated semi-coke for selective catalytic reduction of NO with NH
    Yan Z; Qu Y; Liu L; Ge X; Yang J; Wei L; Yang T; Wang X
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24473-24484. PubMed ID: 28895018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM
    Li Z; Jiang J; Ma Z; Fajardo OA; Deng J; Duan L
    Environ Pollut; 2017 Nov; 230():655-662. PubMed ID: 28715770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal.
    Chen JX; Pan KL; Yu SJ; Yen SY; Chang MB
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21496-21508. PubMed ID: 28748438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental demonstration of NO
    Yue G; Qiu T; Lei Y
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):1118-1133. PubMed ID: 34350573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.
    Lehtoranta K; Vesala H; Koponen P; Korhonen S
    Environ Sci Technol; 2015 Apr; 49(7):4735-41. PubMed ID: 25780953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the denitrification performance of Fe
    Wang J; Lu P; Su W; Xing Y; Li R; Li Y; Zhu T; Yue H; Cui Y
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20248-20263. PubMed ID: 31098908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.
    Shi X; Yu Y; He H; Shuai S; Dong H; Li R
    J Environ Sci (China); 2008; 20(2):177-82. PubMed ID: 18574958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of emission control technologies for auxiliary engines on ocean-going vessels.
    Jayaram V; Nigam A; Welch WA; Miller JW; Cocker DR
    J Air Waste Manag Assoc; 2011 Jan; 61(1):14-21. PubMed ID: 21305884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of the flow field and the chemical reaction coupling of selective catalytic reduction (SCR) system using an orthogonal experiment.
    Ma Q; Zhang D; Gan X
    PLoS One; 2019; 14(7):e0216138. PubMed ID: 31299048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature SCR of NO
    Yu C; Dong L; Chen F; Liu X; Huang B
    Environ Technol; 2017 Apr; 38(8):1030-1042. PubMed ID: 27494642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction.
    McNevin TF
    J Air Waste Manag Assoc; 2016 Jan; 66(1):66-75. PubMed ID: 26563500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.
    Choi SW; Choi SK; Bae HK
    J Air Waste Manag Assoc; 2015 Apr; 65(4):485-91. PubMed ID: 25947218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Risk of NH
    Yuan J; Wang Z; Liu J; Li J; Chen J
    Environ Sci Technol; 2023 Jan; 57(1):606-614. PubMed ID: 36524894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas.
    Niksa S; Fujiwara N
    J Air Waste Manag Assoc; 2005 Dec; 55(12):1866-75. PubMed ID: 16408691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective catalytic reduction of nitrogen oxides over a modified silicoaluminophosphate commercial zeolite.
    Petitto C; Delahay G
    J Environ Sci (China); 2018 Mar; 65():246-252. PubMed ID: 29548395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.