BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 156560)

  • 21. The mechanism of the skeletal muscle myosin ATPase. III. Relationship of the H+ release and the protein absorbance change induced by ATP to the initial Pi burst.
    Chock SP
    J Biol Chem; 1979 May; 254(9):3244-8. PubMed ID: 34617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein fluorescence changes associated with ATP and adenosine 5'-[gamma-thio]triphosphate binding to skeletal muscle myosin subfragment 1 and actomyosin subfragment 1.
    Millar NC; Geeves MA
    Biochem J; 1988 Feb; 249(3):735-43. PubMed ID: 3355494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorylation and its effects on ATPase activity of cardiac and skeletal myosins.
    Reddy YS; Wyborny LE
    Tex Rep Biol Med; 1979; 39():79-90. PubMed ID: 162248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cooperative interactions between the contractile proteins of cardiac and skeletal muscle.
    Bailin G; Shen MJ; Katz AM
    Biochim Biophys Acta; 1977 Feb; 480(2):469-78. PubMed ID: 138446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of variations in pH on kinetics of myosin.
    Wickman-Coffelt J; Fenner C; Zelis R; Mason DT
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():47-57. PubMed ID: 2960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intermediate states of subfragment 1 and actosubfragment 1 ATPase: reevaluation of the mechanism.
    Johnson KA; Taylor EW
    Biochemistry; 1978 Aug; 17(17):3432-42. PubMed ID: 150856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences between smooth and skeletal muscle myosins in their interactions with F-actin.
    Takeuchi K
    J Biochem; 1982 Mar; 91(3):1001-7. PubMed ID: 6122681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separation of myosin subfragment 1 into two fractions, one having the burst site and the other having the non-burst site.
    Taniguchi S; Tawada K
    J Biochem; 1976 Oct; 80(4):853-60. PubMed ID: 137898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATPase characteristics of myosin from nematode Caenorhabditis elegans purified by an improved method. Formation of myosin-phosphate-ADP complex and ATP-induced fluorescence enhancement.
    Tanii I; Osafune M; Arata T; Inoue A
    J Biochem; 1985 Nov; 98(5):1201-9. PubMed ID: 2935526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myosin from fast and slow skeletal and cardiac muscles of mammals of different size.
    SyrovĂ˝ I; Gutmann E
    Physiol Bohemoslov; 1975; 24(4):325-34. PubMed ID: 125884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemo-mechanical energy transduction in relation to myosin isoform composition in skeletal muscle fibres of the rat.
    Reggiani C; Potma EJ; Bottinelli R; Canepari M; Pellegrino MA; Stienen GJ
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):449-60. PubMed ID: 9263923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stopped-flow calorimetry of myosin ATP hydrolysis: an implication of chemomechanical energy transduction.
    Kodama T
    Adv Exp Med Biol; 1988; 226():671-6. PubMed ID: 2970212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygen exchange in the gamma-phosphoryl group of protein-bound ATP during Mg2+-dependent adenosine triphosphatase activity of myosin.
    Bagshaw CR; Trentham DR; Wolcott RG; Boyer PD
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2592-6. PubMed ID: 126449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The reversibility of adenosine triphosphate cleavage by myosin.
    Bagshaw CR; Trentham DR
    Biochem J; 1973 Jun; 133(2):323-8. PubMed ID: 4269253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analyses of the kinetics and subunits of myosins from canine skeletal muscle and cardiac tissue.
    Wikman-Coffelt J; Fenner C; Smith A; Mason DT
    J Biol Chem; 1975 Feb; 250(4):1257-62. PubMed ID: 122977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The function of two heads of myosin in muscle contraction.
    Inoue A; Tanii I; Miyata M; Arata T
    Adv Exp Med Biol; 1988; 226():227-35. PubMed ID: 2970208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cardiac and skeletal muscle myosin polymorphism.
    Lowey S
    Med Sci Sports Exerc; 1986 Jun; 18(3):284-91. PubMed ID: 2941667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-dependent transitions of the myosin-product intermediate at 10 degrees C in the Mn(II)-ATP hydrolysis.
    Hozumi T; Tawada K
    Biochim Biophys Acta; 1975 Jan; 376(1):1-12. PubMed ID: 123763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reaction mechanism of the magnesium ion-dependent adenosine triphosphatase of frog muscle myosin and subfragment 1.
    Ferenczi MA; Homsher E; Simmons RM; Trentham DR
    Biochem J; 1978 Apr; 171(1):165-75. PubMed ID: 148277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-dependent transitions of the myosin-product intermediate at 10 degrees during Mn(II)-ATP hydrolysis by myosin from rabbit psoas muscle.
    Tawada K; Yoshida A
    J Biochem; 1975 Aug; 78(2):293-5. PubMed ID: 132432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.