BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15656612)

  • 21. Glucose-6-phosphate as a probe for the glucosamine-6-phosphate N-acetyltransferase Michaelis complex.
    Hurtado-Guerrero R; Raimi O; Shepherd S; van Aalten DM
    FEBS Lett; 2007 Dec; 581(29):5597-600. PubMed ID: 18005663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans.
    Raczynska J; Olchowy J; Konariev PV; Svergun DI; Milewski S; Rypniewski W
    J Mol Biol; 2007 Sep; 372(3):672-88. PubMed ID: 17681543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. General assay for sugar nucleotidyltransferases using electrospray ionization mass spectrometry.
    Zea CJ; Pohl NL
    Anal Biochem; 2004 May; 328(2):196-202. PubMed ID: 15113697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic beta cells.
    Kang ES; Han D; Park J; Kwak TK; Oh MA; Lee SA; Choi S; Park ZY; Kim Y; Lee JW
    Exp Cell Res; 2008 Jul; 314(11-12):2238-48. PubMed ID: 18570920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-pot three-enzyme synthesis of UDP-GlcNAc derivatives.
    Chen Y; Thon V; Li Y; Yu H; Ding L; Lau K; Qu J; Hie L; Chen X
    Chem Commun (Camb); 2011 Oct; 47(38):10815-7. PubMed ID: 21863157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aedes aegypti phosphohexomutases and uridine diphosphate-hexose pyrophosphorylases: comparison of primary sequences, substrate specificities and temporal transcription.
    Kato N; Mueller CR; Wessely V; Lan Q; Christensen BM
    Insect Mol Biol; 2005 Dec; 14(6):615-24. PubMed ID: 16313562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzyme-catalyzed synthesis of isosteric phosphono-analogues of sugar nucleotides.
    Beaton SA; Huestis MP; Sadeghi-Khomami A; Thomas NR; Jakeman DL
    Chem Commun (Camb); 2009 Jan; (2):238-40. PubMed ID: 19099081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increasing in archaeal GlcNAc-1-P uridyltransferase activity by targeted mutagenesis while retaining its extreme thermostability.
    Zhang Z; Akutsu J; Tsujimura M; Kawarabayasi Y
    J Biochem; 2007 Apr; 141(4):553-62. PubMed ID: 17307792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hexosamine biosynthesis and protein O-glycosylation: the first line of defense against stress, ischemia, and trauma.
    Chatham JC; Nöt LG; Fülöp N; Marchase RB
    Shock; 2008 Apr; 29(4):431-40. PubMed ID: 17909453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structures of human N-Acetylglucosamine kinase in two complexes with N-Acetylglucosamine and with ADP/glucose: insights into substrate specificity and regulation.
    Weihofen WA; Berger M; Chen H; Saenger W; Hinderlich S
    J Mol Biol; 2006 Dec; 364(3):388-99. PubMed ID: 17010375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing the Thermostable Sugar-1-Phosphate Nucleotidylyltransferase Activities of the Archaeal ST0452 Protein through Site Saturation Mutagenesis of the 97th Amino Acid Position.
    Honda Y; Zang Q; Shimizu Y; Dadashipour M; Zhang Z; Kawarabayasi Y
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27864169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial N-functionalized UDP-glucosamine analogues as modified substrates for N-acetylglucosaminyl transferases.
    Lazarević D; Thiem J
    Carbohydr Res; 2006 Apr; 341(5):569-76. PubMed ID: 16445891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of sugar nucleotides by application of phosphoramidites.
    Gold H; van Delft P; Meeuwenoord N; Codée JD; Filippov DV; Eggink G; Overkleeft HS; van der Marel GA
    J Org Chem; 2008 Dec; 73(23):9458-60. PubMed ID: 18991380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new family of glucose-1-phosphate/glucosamine-1-phosphate nucleotidylyltransferase in the biosynthetic pathways for antibiotics.
    Kudo F; Kawabe K; Kuriki H; Eguchi T; Kakinuma K
    J Am Chem Soc; 2005 Feb; 127(6):1711-8. PubMed ID: 15701005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploiting nucleotidylyltransferases to prepare sugar nucleotides.
    Timmons SC; Mosher RH; Knowles SA; Jakeman DL
    Org Lett; 2007 Mar; 9(5):857-60. PubMed ID: 17286408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of ATPase activity of class II chaperonin from the hyperthermophilic archaeon Pyrococcus furiosus.
    Chen HY; Tan XL; Lu J; Zhang CX; Zhang Y; Yang SL
    Biotechnol Lett; 2009 Nov; 31(11):1753-8. PubMed ID: 19590830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic properties of Mycobacterium tuberculosis bifunctional GlmU.
    Zhou Y; Xin Y; Sha S; Ma Y
    Arch Microbiol; 2011 Oct; 193(10):751-7. PubMed ID: 21594607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring specificity of glycosyltransferases: synthesis of new sugar nucleotide related molecules as putative donor substrates.
    Khaled A; Piotrowska O; Dominiak K; Augé C
    Carbohydr Res; 2008 Feb; 343(2):167-78. PubMed ID: 18048019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlcA and UDP-GalA.
    Guo Y; Fang J; Li T; Li X; Ma C; Wang X; Wang PG; Li L
    Carbohydr Res; 2015 Jun; 411():1-5. PubMed ID: 25942062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct oxidation of sugar nucleotides to the corresponding uronic acids: TEMPO and platinum-based procedures.
    Rejzek M; Mukhopadhyay B; Wenzel CQ; Lam JS; Field RA
    Carbohydr Res; 2007 Feb; 342(3-4):460-6. PubMed ID: 17087923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.