BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15656636)

  • 1. On the origin of optical activity in tris-diamine complexes of Co(III) and Rh(III): a simple model based on time-dependent density function theory.
    Jorge FE; Autschbach J; Ziegler T
    J Am Chem Soc; 2005 Jan; 127(3):975-85. PubMed ID: 15656636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the origin of the optical activity in the d-d transition region of tris-bidentate Co(III) and Rh(III) complexes.
    Jorge FE; Autschbach J; Ziegler T
    Inorg Chem; 2003 Dec; 42(26):8902-10. PubMed ID: 14686873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational analysis and vibrational circular dichroism of tris(ethylenediamine)ruthenium(II) complex: a theoretical study.
    Pandith AH; Pati SK
    J Phys Chem A; 2010 Jan; 114(1):87-92. PubMed ID: 20000559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the origin of circular dichroism in trigonal dihedral d6 complexes of bidentate ligands containing only sigma-orbitals. A qualitative model based on a density functional theory study of Lambda-[Co(en)3]3+.
    Fan J; Ziegler T
    Chirality; 2008 Sep; 20(9):938-50. PubMed ID: 18246551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural study of Ga(III), In(III), and Fe(III) complexes of triaza-macrocycle based ligands with N3S3 donor set.
    Notni J; Pohle K; Peters JA; Görls H; Platas-Iglesias C
    Inorg Chem; 2009 Apr; 48(7):3257-67. PubMed ID: 19281197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional calculations on electronic circular dichroism spectra of chiral transition metal complexes.
    Autschbach J; Jorge FE; Ziegler T
    Inorg Chem; 2003 May; 42(9):2867-77. PubMed ID: 12716178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis of the individual contributions of chiral arrays to the chiroptical properties of tris-diamine ruthenium chelates.
    Wang Y; Wang Y; Wang J; Liu Y; Yang Y
    J Am Chem Soc; 2009 Jul; 131(25):8839-47. PubMed ID: 19496563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of absolute configuration of chiral hemicage metal complexes using time-dependent density functional theory.
    Coughlin FJ; Oyler KD; Pascal RA; Bernhard S
    Inorg Chem; 2008 Feb; 47(3):974-9. PubMed ID: 18179205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure and circular dichroism of tris(bipyridyl) metal complexes within density functional theory.
    Fan J; Autschbach J; Ziegler T
    Inorg Chem; 2010 Feb; 49(4):1355-62. PubMed ID: 20092283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular dichroism of trigonal dihedral chromium(III) complexes: a theoretical study based on open-shell time-dependent density functional theory.
    Fan J; Seth M; Autschbach J; Ziegler T
    Inorg Chem; 2008 Dec; 47(24):11656-68. PubMed ID: 19007212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled binding of a L-cysteinato cobalt(III) octahedron to a cadmium(II) center.
    Aridomi T; Kawamoto T; Konno T
    Inorg Chem; 2007 Feb; 46(4):1343-53. PubMed ID: 17291121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic effect of different positions of the -NO2 group on the DNA-intercalator of chiral complexes [Ru(bpy)2L]2+ (L =o-npip, m-npip and p-npip).
    Shi S; Liu J; Li J; Zheng KC; Tan CP; Chen LM; Ji LN
    Dalton Trans; 2005 Jun; (11):2038-46. PubMed ID: 15909056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homoleptic trimethylsilylacetylide complexes of chromium(III), iron(II), and cobalt(III): syntheses, structures, and ligand field parameters.
    Berben LA; Long JR
    Inorg Chem; 2005 Nov; 44(23):8459-68. PubMed ID: 16270984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong solvent-dependent preference of Δ and Λ stereoisomers of a tris(diamine)nickel(II) complex revealed by vibrational circular dichroism spectroscopy.
    Merten C; McDonald R; Xu Y
    Inorg Chem; 2014 Mar; 53(6):3177-82. PubMed ID: 24601562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution of chiral, tetrahedral M4L6 metal-ligand hosts.
    Davis AV; Fiedler D; Ziegler M; Terpin A; Raymond KN
    J Am Chem Soc; 2007 Dec; 129(49):15354-63. PubMed ID: 18020339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical study of the CD spectra and conformational properties of axially chiral 2,2'-, 3,3'-, and 4,4'-biphenol ethers.
    Mori T; Inoue Y; Grimme S
    J Phys Chem A; 2007 May; 111(20):4222-34. PubMed ID: 17472357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of 1D wave versus 2D honeycomb CoIIICdIICuI heterotrimetallic architectures by Delta L-Lambda L diastereoisomerism of L-cysteinatocobalt(III) building units.
    Aridomi T; Igashira-Kamiyama A; Konno T
    Inorg Chem; 2008 Nov; 47(22):10202-4. PubMed ID: 18947225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of mixed-ligand cobalt(III) complexes containing (3-aminopropyl)dimethylphosphine (pdmp). Conformation of the six-membered pdmp chelate ring.
    Suzuki T; Fujiiwara K; Takagi HD; Kashiwabara K
    Dalton Trans; 2007 Jan; (3):308-19. PubMed ID: 17200750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional calculation of the electronic circular dichroism spectra of the transition metal complexes [M(phen)3]2+ (M = Fe, Ru, Os).
    Le Guennic B; Hieringer W; Görling A; Autschbach J
    J Phys Chem A; 2005 Jun; 109(21):4836-46. PubMed ID: 16833828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical charge density distribution in two ternary cobalt(III) complexes of aromatic amino acids.
    Overgaard J; Waller MP; Piltz R; Platts JA; Emseis P; Leverett P; Williams PA; Hibbs DE
    J Phys Chem A; 2007 Oct; 111(40):10123-33. PubMed ID: 17877334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.