These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 15656935)

  • 1. The metabolic costs of 'bent-hip, bent-knee' walking in humans.
    Carey TS; Crompton RH
    J Hum Evol; 2005 Jan; 48(1):25-44. PubMed ID: 15656935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relative cost of bent-hip bent-knee walking is reduced in water.
    Kuliukas AV; Milne N; Fournier P
    Homo; 2009; 60(6):479-88. PubMed ID: 19853850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of inverse-dynamics musculo-skeletal models of AL 288-1 Australopithecus afarensis and KNM-WT 15000 Homo ergaster to modern humans, with implications for the evolution of bipedalism.
    Wang W; Crompton RH; Carey TS; Günther MM; Li Y; Savage R; Sellers WI
    J Hum Evol; 2004 Dec; 47(6):453-78. PubMed ID: 15566947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanical effectiveness of erect and "bent-hip, bent-knee" bipedal walking in Australopithecus afarensis.
    Crompton RH; Yu L; Weijie W; Günther M; Savage R
    J Hum Evol; 1998 Jul; 35(1):55-74. PubMed ID: 9680467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of load-carrying in the evolution of modern body proportions.
    Wang WJ; Crompton RH
    J Anat; 2004 May; 204(5):417-30. PubMed ID: 15198704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transformation during erect and 'bent-hip, bent-knee' walking by humans with implications for the evolution of bipedalism.
    Wang WJ; Crompton RH; Li Y; Gunther MM
    J Hum Evol; 2003 May; 44(5):563-79. PubMed ID: 12765618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The metabolic cost of walking in humans, chimpanzees, and early hominins.
    Pontzer H; Raichlen DA; Sockol MD
    J Hum Evol; 2009 Jan; 56(1):43-54. PubMed ID: 18986682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle force production during bent-knee, bent-hip walking in humans.
    Foster AD; Raichlen DA; Pontzer H
    J Hum Evol; 2013 Sep; 65(3):294-302. PubMed ID: 23928351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Laetoli footprints and early hominin locomotor kinematics.
    Raichlen DA; Pontzer H; Sockol MD
    J Hum Evol; 2008 Jan; 54(1):112-7. PubMed ID: 17804036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins.
    Steudel-Numbers KL; Tilkens MJ
    J Hum Evol; 2004; 47(1-2):95-109. PubMed ID: 15288526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy expenditure of bipedal walking is higher than that of quadrupedal walking in Japanese macaques.
    Nakatsukasa M; Hirasaki E; Ogihara N
    Am J Phys Anthropol; 2006 Sep; 131(1):33-7. PubMed ID: 16485295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods.
    Reilly SM; McElroy EJ; Biknevicius AR
    Zoology (Jena); 2007; 110(4):271-89. PubMed ID: 17482802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1).
    Nagano A; Umberger BR; Marzke MW; Gerritsen KG
    Am J Phys Anthropol; 2005 Jan; 126(1):2-13. PubMed ID: 15386246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses.
    Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA
    J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics in Homo erectus and other early hominins: the consequences of increased lower-limb length.
    Steudel-Numbers KL
    J Hum Evol; 2006 Nov; 51(5):445-53. PubMed ID: 16780923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic costs of bipedal and quadrupedal walking in Japanese macaques.
    Nakatsukasa M; Ogihara N; Hamada Y; Goto Y; Yamada M; Hirakawa T; Hirasaki E
    Am J Phys Anthropol; 2004 Jul; 124(3):248-56. PubMed ID: 15197820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinopelvic pathways to bipedality: why no hominids ever relied on a bent-hip-bent-knee gait.
    Lovejoy CO; McCollum MA
    Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1556):3289-99. PubMed ID: 20855303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The natural history of human gait and posture. Part 3. The knee.
    Lovejoy CO
    Gait Posture; 2007 Mar; 25(3):325-41. PubMed ID: 16766186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative energetics of mammalian locomotion: humans are not different.
    Halsey LG; White CR
    J Hum Evol; 2012 Nov; 63(5):718-22. PubMed ID: 22963931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.