BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15657051)

  • 21. Rolling-circle replication of mitochondrial DNA in the higher plant Chenopodium album (L.).
    Backert S; Dörfel P; Lurz R; Börner T
    Mol Cell Biol; 1996 Nov; 16(11):6285-94. PubMed ID: 8887658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis.
    Zellinger B; Akimcheva S; Puizina J; Schirato M; Riha K
    Mol Cell; 2007 Jul; 27(1):163-9. PubMed ID: 17612498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homologous recombination generates T-loop-sized deletions at human telomeres.
    Wang RC; Smogorzewska A; de Lange T
    Cell; 2004 Oct; 119(3):355-68. PubMed ID: 15507207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strand break-induced replication fork collapse leads to C-circles, C-overhangs and telomeric recombination.
    Zhang T; Zhang Z; Shengzhao G; Li X; Liu H; Zhao Y
    PLoS Genet; 2019 Feb; 15(2):e1007925. PubMed ID: 30716077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strand switching during rolling circle replication of plasmid-like DNA circles in the mitochondria of the higher plant Chenopodium album (L.).
    Backert S
    Plasmid; 2000 Mar; 43(2):166-70. PubMed ID: 10686137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mathematical model of alternative mechanism of telomere length maintenance.
    Kollár R; Bod'ová K; Nosek J; Tomáška L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032701. PubMed ID: 24730869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Telomerase suppresses formation of ALT-associated single-stranded telomeric C-circles.
    Plantinga MJ; Pascarelli KM; Merkel AS; Lazar AJ; von Mehren M; Lev D; Broccoli D
    Mol Cancer Res; 2013 Jun; 11(6):557-67. PubMed ID: 23505069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The C-Circle Assay for alternative-lengthening-of-telomeres activity.
    Henson JD; Lau LM; Koch S; Martin La Rotta N; Dagg RA; Reddel RR
    Methods; 2017 Feb; 114():74-84. PubMed ID: 27595911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternative lengthening of telomeres in mammalian cells.
    Henson JD; Neumann AA; Yeager TR; Reddel RR
    Oncogene; 2002 Jan; 21(4):598-610. PubMed ID: 11850785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of an Arabidopsis RNA-binding protein with plant single-stranded telomeric DNA modulates telomerase activity.
    Kwon C; Chung IK
    J Biol Chem; 2004 Mar; 279(13):12812-8. PubMed ID: 14703514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structure and DNA-binding properties of Mgm101 from a yeast with a linear mitochondrial genome.
    Pevala V; Truban D; Bauer JA; Košťan J; Kunová N; Bellová J; Brandstetter M; Marini V; Krejčí L; Tomáška Ľ; Nosek J; Kutejová E
    Nucleic Acids Res; 2016 Mar; 44(5):2227-39. PubMed ID: 26743001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xrcc3 and Nbs1 are required for the production of extrachromosomal telomeric circles in human alternative lengthening of telomere cells.
    Compton SA; Choi JH; Cesare AJ; Ozgür S; Griffith JD
    Cancer Res; 2007 Feb; 67(4):1513-9. PubMed ID: 17308089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Telomeric C-circles localize at nuclear pore complexes in Saccharomyces cerevisiae.
    Aguilera P; Dubarry M; Hardy J; Lisby M; Simon MN; Géli V
    EMBO J; 2022 Mar; 41(6):e108736. PubMed ID: 35147992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts.
    McEachern MJ; Blackburn EH
    Proc Natl Acad Sci U S A; 1994 Apr; 91(8):3453-7. PubMed ID: 8159768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abrupt disruption of capping and a single source for recombinationally elongated telomeres in Kluyveromyces lactis.
    Topcu Z; Nickles K; Davis C; McEachern MJ
    Proc Natl Acad Sci U S A; 2005 Mar; 102(9):3348-53. PubMed ID: 15713803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Break-induced replication and recombinational telomere elongation in yeast.
    McEachern MJ; Haber JE
    Annu Rev Biochem; 2006; 75():111-35. PubMed ID: 16756487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance.
    Tomaska L; Nosek J; Makhov AM; Pastorakova A; Griffith JD
    Nucleic Acids Res; 2000 Nov; 28(22):4479-87. PubMed ID: 11071936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants.
    Kosa P; Valach M; Tomaska L; Wolfe KH; Nosek J
    Nucleic Acids Res; 2006; 34(8):2472-81. PubMed ID: 16684995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extrachromosomal telomere DNA derived from excessive strand displacements.
    Lee J; Lee J; Sohn EJ; Taglialatela A; O'Sullivan RJ; Ciccia A; Min J
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2318438121. PubMed ID: 38696464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural aspects of RecA-dependent homologous strand exchange involving human telomeric DNA.
    Zein SS; Levene SD
    Biochemistry; 2005 Mar; 44(12):4817-28. PubMed ID: 15779908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.