These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15657062)

  • 21. The Escherichia coli ClpA molecular chaperone self-assembles into tetramers.
    Veronese PK; Stafford RP; Lucius AL
    Biochemistry; 2009 Oct; 48(39):9221-33. PubMed ID: 19650643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2008 Feb; 29(4):441-50. PubMed ID: 18313382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ClpS, a substrate modulator of the ClpAP machine.
    Dougan DA; Reid BG; Horwich AL; Bukau B
    Mol Cell; 2002 Mar; 9(3):673-83. PubMed ID: 11931773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the ClpP protease.
    Hinnerwisch J; Reid BG; Fenton WA; Horwich AL
    J Biol Chem; 2005 Dec; 280(49):40838-44. PubMed ID: 16207718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular properties of ClpAP protease of Escherichia coli: ATP-dependent association of ClpA and clpP.
    Maurizi MR; Singh SK; Thompson MW; Kessel M; Ginsburg A
    Biochemistry; 1998 May; 37(21):7778-86. PubMed ID: 9601038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP hydrolysis inactivating Walker B mutation perturbs E. coli ClpA self-assembly energetics in the absence of nucleotide.
    Duran EC; Lucius AL
    Biophys Chem; 2018 Nov; 242():6-14. PubMed ID: 30173103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The flexible attachment of the N-domains to the ClpA ring body allows their use on demand.
    Cranz-Mileva S; Imkamp F; Kolygo K; Maglica Z; Kress W; Weber-Ban E
    J Mol Biol; 2008 Apr; 378(2):412-24. PubMed ID: 18358489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease.
    Beuron F; Maurizi MR; Belnap DM; Kocsis E; Booy FP; Kessel M; Steven AC
    J Struct Biol; 1998 Nov; 123(3):248-59. PubMed ID: 9878579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP.
    Grimaud R; Kessel M; Beuron F; Steven AC; Maurizi MR
    J Biol Chem; 1998 May; 273(20):12476-81. PubMed ID: 9575205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local and global mobility in the ClpA AAA+ chaperone detected by cryo-electron microscopy: functional connotations.
    Effantin G; Ishikawa T; De Donatis GM; Maurizi MR; Steven AC
    Structure; 2010 May; 18(5):553-62. PubMed ID: 20462489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the N-terminal repeat domain of Escherichia coli ClpA-A class I Clp/HSP100 ATPase.
    Lo JH; Baker TA; Sauer RT
    Protein Sci; 2001 Mar; 10(3):551-9. PubMed ID: 11344323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP.
    Miller JM; Lin J; Li T; Lucius AL
    J Mol Biol; 2013 Aug; 425(15):2795-812. PubMed ID: 23639359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP.
    Singh SK; Grimaud R; Hoskins JR; Wickner S; Maurizi MR
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):8898-903. PubMed ID: 10922052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A degradation signal recognition in prokaryotes.
    Park EY; Song HK
    J Synchrotron Radiat; 2008 May; 15(Pt 3):246-9. PubMed ID: 18421150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.
    Thibault G; Tsitrin Y; Davidson T; Gribun A; Houry WA
    EMBO J; 2006 Jul; 25(14):3367-76. PubMed ID: 16810315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Examination of the nucleotide-linked assembly mechanism of E. coli ClpA.
    Duran EC; Lucius AL
    Protein Sci; 2019 Jul; 28(7):1312-1323. PubMed ID: 31054177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A context-dependent ClpX recognition determinant located at the C terminus of phage Mu repressor.
    Defenbaugh DA; Nakai H
    J Biol Chem; 2003 Dec; 278(52):52333-9. PubMed ID: 14559921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system.
    Gottesman S; Roche E; Zhou Y; Sauer RT
    Genes Dev; 1998 May; 12(9):1338-47. PubMed ID: 9573050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy-dependent degradation: Linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing.
    Burton RE; Baker TA; Sauer RT
    Protein Sci; 2003 May; 12(5):893-902. PubMed ID: 12717012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP.
    Hou JY; Sauer RT; Baker TA
    Nat Struct Mol Biol; 2008 Mar; 15(3):288-94. PubMed ID: 18297088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.