BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 15657083)

  • 1. Dissection of brefeldin A-sensitive and -insensitive steps in apicoplast protein targeting.
    DeRocher A; Gilbert B; Feagin JE; Parsons M
    J Cell Sci; 2005 Feb; 118(Pt 3):565-74. PubMed ID: 15657083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites.
    Tonkin CJ; Struck NS; Mullin KA; Stimmler LM; McFadden GI
    Mol Microbiol; 2006 Aug; 61(3):614-30. PubMed ID: 16787449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vesicles bearing Toxoplasma apicoplast membrane proteins persist following loss of the relict plastid or Golgi body disruption.
    Bouchut A; Geiger JA; DeRocher AE; Parsons M
    PLoS One; 2014; 9(11):e112096. PubMed ID: 25369183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Traffic to the Plasmodium falciparum apicoplast: evidence for a sorting branch point at the Golgi.
    Heiny SR; Pautz S; Recker M; Przyborski JM
    Traffic; 2014 Dec; 15(12):1290-304. PubMed ID: 25264207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A membrane protease is targeted to the relict plastid of toxoplasma via an internal signal sequence.
    Karnataki A; Derocher AE; Coppens I; Feagin JE; Parsons M
    Traffic; 2007 Nov; 8(11):1543-53. PubMed ID: 17822404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-Glycomic and Microscopic Subcellular Localization Analyses of NPP1, 2 and 6 Strongly Indicate that trans-Golgi Compartments Participate in the Golgi to Plastid Traffic of Nucleotide Pyrophosphatase/Phosphodiesterases in Rice.
    Kaneko K; Takamatsu T; Inomata T; Oikawa K; Itoh K; Hirose K; Amano M; Nishimura S; Toyooka K; Matsuoka K; Pozueta-Romero J; Mitsui T
    Plant Cell Physiol; 2016 Aug; 57(8):1610-28. PubMed ID: 27335351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system.
    DeRocher A; Hagen CB; Froehlich JE; Feagin JE; Parsons M
    J Cell Sci; 2000 Nov; 113 ( Pt 22)():3969-77. PubMed ID: 11058084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal positively charged amino acids, but not their exact position, are important for apicoplast transit peptide fidelity in Toxoplasma gondii.
    Tonkin CJ; Roos DS; McFadden GI
    Mol Biochem Parasitol; 2006 Dec; 150(2):192-200. PubMed ID: 16963133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous signals allow efficient targeting of a nuclear-encoded fusion protein to plastids and endoplasmic reticulum in diverse plant species.
    Gnanasambandam A; Polkinghorne IG; Birch RG
    Plant Biotechnol J; 2007 Mar; 5(2):290-6. PubMed ID: 17309684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of apicoplast targeting and transit peptide processing in Toxoplasma gondii by deletional and insertional mutagenesis.
    Yung S; Unnasch TR; Lang-Unnasch N
    Mol Biochem Parasitol; 2001 Nov; 118(1):11-21. PubMed ID: 11704269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway.
    Waller RF; Reed MB; Cowman AF; McFadden GI
    EMBO J; 2000 Apr; 19(8):1794-802. PubMed ID: 10775264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxoplasma gondii nucleus coding apicoplast protein ACP synthesis and trafficking in delayed death.
    Wu L; Shen J; Zhou Y; Wang X; Wu L; Jiang X; Chen S
    Parasitol Res; 2015 Mar; 114(3):1099-105. PubMed ID: 25563610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel trafficking pathway in Plasmodium falciparum for the organellar localization of glutathione peroxidase-like thioredoxin peroxidase.
    Chaudhari R; Narayan A; Patankar S
    FEBS J; 2012 Oct; 279(20):3872-88. PubMed ID: 22889167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum.
    Waller RF; Keeling PJ; Donald RG; Striepen B; Handman E; Lang-Unnasch N; Cowman AF; Besra GS; Roos DS; McFadden GI
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12352-7. PubMed ID: 9770490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii.
    Hager KM; Striepen B; Tilney LG; Roos DS
    J Cell Sci; 1999 Aug; 112 ( Pt 16)():2631-8. PubMed ID: 10413671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein trafficking inside Toxoplasma gondii.
    Sheiner L; Soldati-Favre D
    Traffic; 2008 May; 9(5):636-46. PubMed ID: 18331382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting and processing of nuclear-encoded apicoplast proteins in plastid segregation mutants of Toxoplasma gondii.
    He CY; Striepen B; Pletcher CH; Murray JM; Roos DS
    J Biol Chem; 2001 Jul; 276(30):28436-42. PubMed ID: 11319231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast.
    Ponpuak M; Klemba M; Park M; Gluzman IY; Lamppa GK; Goldberg DE
    Mol Microbiol; 2007 Jan; 63(2):314-34. PubMed ID: 17074076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Dissection of SNAREs Reveals Key Factors for Vesicular Trafficking to the Endosome-like Compartment and Apicoplast via the Secretory System in Toxoplasma gondii.
    Cao S; Yang J; Fu J; Chen H; Jia H
    mBio; 2021 Aug; 12(4):e0138021. PubMed ID: 34340555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate metabolism in the Toxoplasma gondii apicoplast: localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator.
    Fleige T; Fischer K; Ferguson DJ; Gross U; Bohne W
    Eukaryot Cell; 2007 Jun; 6(6):984-96. PubMed ID: 17449654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.