BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 15657296)

  • 1. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA.
    Csanády L; Seto-Young D; Chan KW; Cenciarelli C; Angel BB; Qin J; McLachlin DT; Krutchinsky AN; Chait BT; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Feb; 125(2):171-86. PubMed ID: 15657296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains.
    Csanády L; Chan KW; Seto-Young D; Kopsco DC; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Sep; 116(3):477-500. PubMed ID: 10962022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels.
    Wang F; Zeltwanger S; Hu S; Hwang TC
    J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C; Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides.
    Mihályi C; Iordanov I; Töröcsik B; Csanády L
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21740-21746. PubMed ID: 32817533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain.
    Rich DP; Berger HA; Cheng SH; Travis SM; Saxena M; Smith AE; Welsh MJ
    J Biol Chem; 1993 Sep; 268(27):20259-67. PubMed ID: 7690753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dibasic protein kinase A sites regulate bursting rate and nucleotide sensitivity of the cystic fibrosis transmembrane conductance regulator chloride channel.
    Mathews CJ; Tabcharani JA; Chang XB; Jensen TJ; Riordan JR; Hanrahan JW
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):365-77. PubMed ID: 9508802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of MgATP-dependent gating of CFTR Cl- channels.
    Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Jan; 121(1):17-36. PubMed ID: 12508051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator.
    Wang G
    J Biol Chem; 2011 Jan; 286(3):2171-82. PubMed ID: 21059651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain.
    Chen JH
    J Biol Chem; 2020 Apr; 295(14):4577-4590. PubMed ID: 32102849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cAMP-dependent protein kinase-mediated phosphorylation of cystic fibrosis transmembrane conductance regulator residue Ser-753 and its role in channel activation.
    Seibert FS; Tabcharani JA; Chang XB; Dulhanty AM; Mathews C; Hanrahan JW; Riordan JR
    J Biol Chem; 1995 Feb; 270(5):2158-62. PubMed ID: 7530719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFTR gating I: Characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DeltaR-CFTR).
    Bompadre SG; Ai T; Cho JH; Wang X; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2005 Apr; 125(4):361-75. PubMed ID: 15767295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G551D mutation impairs PKA-dependent activation of CFTR channel that can be restored by novel GOF mutations.
    Wang W; Fu L; Liu Z; Wen H; Rab A; Hong JS; Kirk KL; Rowe SM
    Am J Physiol Lung Cell Mol Physiol; 2020 Nov; 319(5):L770-L785. PubMed ID: 32877225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of phosphorylation by protein kinase A on CFTR at the cell surface and endoplasmic reticulum.
    Seibert FS; Chang XB; Aleksandrov AA; Clarke DM; Hanrahan JW; Riordan JR
    Biochim Biophys Acta; 1999 Dec; 1461(2):275-83. PubMed ID: 10581361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.