These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15657417)

  • 1. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment.
    Faustino NA; Cooper TA
    Mol Cell Biol; 2005 Feb; 25(3):879-87. PubMed ID: 15657417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing.
    Ladd AN; Charlet N; Cooper TA
    Mol Cell Biol; 2001 Feb; 21(4):1285-96. PubMed ID: 11158314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CELF proteins regulate CFTR pre-mRNA splicing: essential role of the divergent domain of ETR-3.
    Dujardin G; Buratti E; Charlet-Berguerand N; Martins de Araujo M; Mbopda A; Le Jossic-Corcos C; Pagani F; Ferec C; Corcos L
    Nucleic Acids Res; 2010 Nov; 38(20):7273-85. PubMed ID: 20631008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of CELF splicing activation and repression domains in vivo.
    Han J; Cooper TA
    Nucleic Acids Res; 2005; 33(9):2769-80. PubMed ID: 15894795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy.
    Lu X; Timchenko NA; Timchenko LT
    Hum Mol Genet; 1999 Jan; 8(1):53-60. PubMed ID: 9887331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ETR-3 and CELF4 protein domains required for RNA binding and splicing activity in vivo.
    Singh G; Charlet-B N; Han J; Cooper TA
    Nucleic Acids Res; 2004; 32(3):1232-41. PubMed ID: 14973222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events.
    Ladd AN; Cooper TA
    J Cell Sci; 2004 Jul; 117(Pt 16):3519-29. PubMed ID: 15226369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CUG-BP1/CELF1 requires UGU-rich sequences for high-affinity binding.
    Marquis J; Paillard L; Audic Y; Cosson B; Danos O; Le Bec C; Osborne HB
    Biochem J; 2006 Dec; 400(2):291-301. PubMed ID: 16938098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3.
    Tsuda K; Kuwasako K; Takahashi M; Someya T; Inoue M; Terada T; Kobayashi N; Shirouzu M; Kigawa T; Tanaka A; Sugano S; Güntert P; Muto Y; Yokoyama S
    Nucleic Acids Res; 2009 Aug; 37(15):5151-66. PubMed ID: 19553194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonistic regulation of alpha-actinin alternative splicing by CELF proteins and polypyrimidine tract binding protein.
    Gromak N; Matlin AJ; Cooper TA; Smith CW
    RNA; 2003 Apr; 9(4):443-56. PubMed ID: 12649496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of CUG-BP1 binding to RNA repeats.
    Mori D; Sasagawa N; Kino Y; Ishiura S
    J Biochem; 2008 Mar; 143(3):377-83. PubMed ID: 18039683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Region-specific alternative splicing in the nervous system: implications for regulation by the RNA-binding protein NAPOR.
    Zhang W; Liu H; Han K; Grabowski PJ
    RNA; 2002 May; 8(5):671-85. PubMed ID: 12022233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43.
    Lukavsky PJ; Daujotyte D; Tollervey JR; Ule J; Stuani C; Buratti E; Baralle FE; Damberger FF; Allain FH
    Nat Struct Mol Biol; 2013 Dec; 20(12):1443-9. PubMed ID: 24240615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of alternative splicing of alpha-actinin transcript by Bruno-like proteins.
    Suzuki H; Jin Y; Otani H; Yasuda K; Inoue K
    Genes Cells; 2002 Feb; 7(2):133-41. PubMed ID: 11895477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins.
    Wang ET; Ward AJ; Cherone JM; Giudice J; Wang TT; Treacy DJ; Lambert NJ; Freese P; Saxena T; Cooper TA; Burge CB
    Genome Res; 2015 Jun; 25(6):858-71. PubMed ID: 25883322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and embryonic expression patterns of the chicken CELF family.
    Brimacombe KR; Ladd AN
    Dev Dyn; 2007 Aug; 236(8):2216-24. PubMed ID: 17584860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of CELF proteins in neurological disorders.
    Gallo JM; Spickett C
    RNA Biol; 2010; 7(4):474-9. PubMed ID: 20622515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CUGBP2 splicing factor regulates an ensemble of branchpoints from perimeter binding sites with implications for autoregulation.
    Dembowski JA; Grabowski PJ
    PLoS Genet; 2009 Aug; 5(8):e1000595. PubMed ID: 19680430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neurofibromatosis type I pre-mRNA is a novel target of CELF protein-mediated splicing regulation.
    Barron VA; Zhu H; Hinman MN; Ladd AN; Lou H
    Nucleic Acids Res; 2010 Jan; 38(1):253-64. PubMed ID: 19854948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1.
    Kino Y; Washizu C; Oma Y; Onishi H; Nezu Y; Sasagawa N; Nukina N; Ishiura S
    Nucleic Acids Res; 2009 Oct; 37(19):6477-90. PubMed ID: 19720736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.