These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 15657445)
1. A direct intersection between p53 and transforming growth factor beta pathways targets chromatin modification and transcription repression of the alpha-fetoprotein gene. Wilkinson DS; Ogden SK; Stratton SA; Piechan JL; Nguyen TT; Smulian GA; Barton MC Mol Cell Biol; 2005 Feb; 25(3):1200-12. PubMed ID: 15657445 [TBL] [Abstract][Full Text] [Related]
2. Chromatin-bound p53 anchors activated Smads and the mSin3A corepressor to confer transforming-growth-factor-beta-mediated transcription repression. Wilkinson DS; Tsai WW; Schumacher MA; Barton MC Mol Cell Biol; 2008 Mar; 28(6):1988-98. PubMed ID: 18212064 [TBL] [Abstract][Full Text] [Related]
3. Transcription factor interactions and chromatin modifications associated with p53-mediated, developmental repression of the alpha-fetoprotein gene. Nguyen TT; Cho K; Stratton SA; Barton MC Mol Cell Biol; 2005 Mar; 25(6):2147-57. PubMed ID: 15743813 [TBL] [Abstract][Full Text] [Related]
4. Family members p53 and p73 act together in chromatin modification and direct repression of alpha-fetoprotein transcription. Cui R; Nguyen TT; Taube JH; Stratton SA; Feuerman MH; Barton MC J Biol Chem; 2005 Nov; 280(47):39152-60. PubMed ID: 16203738 [TBL] [Abstract][Full Text] [Related]
5. ING1 represses transcription by direct DNA binding and through effects on p53. Kataoka H; Bonnefin P; Vieyra D; Feng X; Hara Y; Miura Y; Joh T; Nakabayashi H; Vaziri H; Harris CC; Riabowol K Cancer Res; 2003 Sep; 63(18):5785-92. PubMed ID: 14522900 [TBL] [Abstract][Full Text] [Related]
6. p53-targeted LSD1 functions in repression of chromatin structure and transcription in vivo. Tsai WW; Nguyen TT; Shi Y; Barton MC Mol Cell Biol; 2008 Sep; 28(17):5139-46. PubMed ID: 18573881 [TBL] [Abstract][Full Text] [Related]
7. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Stroschein SL; Bonni S; Wrana JL; Luo K Genes Dev; 2001 Nov; 15(21):2822-36. PubMed ID: 11691834 [TBL] [Abstract][Full Text] [Related]
8. Inability of transforming growth factor-beta to cause SnoN degradation leads to resistance to transforming growth factor-beta-induced growth arrest in esophageal cancer cells. Edmiston JS; Yeudall WA; Chung TD; Lebman DA Cancer Res; 2005 Jun; 65(11):4782-8. PubMed ID: 15930298 [TBL] [Abstract][Full Text] [Related]
9. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration. Macias-Silva M; Li W; Leu JI; Crissey MA; Taub R J Biol Chem; 2002 Aug; 277(32):28483-90. PubMed ID: 12023281 [TBL] [Abstract][Full Text] [Related]
10. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Stroschein SL; Wang W; Zhou S; Zhou Q; Luo K Science; 1999 Oct; 286(5440):771-4. PubMed ID: 10531062 [TBL] [Abstract][Full Text] [Related]
11. Foxa1 functions as a pioneer transcription factor at transposable elements to activate Afp during differentiation of embryonic stem cells. Taube JH; Allton K; Duncan SA; Shen L; Barton MC J Biol Chem; 2010 May; 285(21):16135-44. PubMed ID: 20348100 [TBL] [Abstract][Full Text] [Related]
12. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. Yang J; Dai C; Liu Y J Am Soc Nephrol; 2005 Jan; 16(1):68-78. PubMed ID: 15537870 [TBL] [Abstract][Full Text] [Related]
14. Transforming growth factor-β/SMAD Target gene SKIL is negatively regulated by the transcriptional cofactor complex SNON-SMAD4. Tecalco-Cruz AC; Sosa-Garrocho M; Vázquez-Victorio G; Ortiz-García L; Domínguez-Hüttinger E; Macías-Silva M J Biol Chem; 2012 Aug; 287(32):26764-76. PubMed ID: 22674574 [TBL] [Abstract][Full Text] [Related]
15. Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-beta signaling by sequestration of the Smad proteins. Krakowski AR; Laboureau J; Mauviel A; Bissell MJ; Luo K Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12437-42. PubMed ID: 16109768 [TBL] [Abstract][Full Text] [Related]
16. Downregulation of SnoN expression in obstructive nephropathy is mediated by an enhanced ubiquitin-dependent degradation. Tan R; Zhang J; Tan X; Zhang X; Yang J; Liu Y J Am Soc Nephrol; 2006 Oct; 17(10):2781-91. PubMed ID: 16959829 [TBL] [Abstract][Full Text] [Related]
17. TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Bonni S; Wang HR; Causing CG; Kavsak P; Stroschein SL; Luo K; Wrana JL Nat Cell Biol; 2001 Jun; 3(6):587-95. PubMed ID: 11389444 [TBL] [Abstract][Full Text] [Related]
18. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Poncelet AC; de Caestecker MP; Schnaper HW Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488 [TBL] [Abstract][Full Text] [Related]
19. SnoN is a cell type-specific mediator of transforming growth factor-beta responses. Sarker KP; Wilson SM; Bonni S J Biol Chem; 2005 Apr; 280(13):13037-46. PubMed ID: 15677458 [TBL] [Abstract][Full Text] [Related]
20. p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Lee KC; Crowe AJ; Barton MC Mol Cell Biol; 1999 Feb; 19(2):1279-88. PubMed ID: 9891062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]