These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 15657484)

  • 1. Studying 3D subdomains of proteins at the nanometer scale using fluorescence spectroscopy.
    Viallet PM; Vo-Dinh T
    Methods Mol Biol; 2005; 300():165-89. PubMed ID: 15657484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The study of protein folding and dynamics by determination of intramolecular distance distributions and their fluctuations using ensemble and single-molecule FRET measurements.
    Haas E
    Chemphyschem; 2005 May; 6(5):858-70. PubMed ID: 15884068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A FRET-based approach for studying conformational changes of a cytoskeleton-related tumor suppressor molecule.
    Hennigan RF; Chaiken MF; Foster LA; Ip W
    Methods Mol Biol; 2009; 586():143-56. PubMed ID: 19768428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques.
    Hébert TE; Galés C; Rebois RV
    Cell Biochem Biophys; 2006; 45(1):85-109. PubMed ID: 16679566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor.
    Steinmeyer R; Harms GS
    Microsc Res Tech; 2009 Jan; 72(1):12-21. PubMed ID: 18785253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring protein interactions in the living cell through the fluorescence decays of the cyan fluorescent protein.
    Grailhe R; Merola F; Ridard J; Couvignou S; Le Poupon C; Changeux JP; Laguitton-Pasquier H
    Chemphyschem; 2006 Jul; 7(7):1442-54. PubMed ID: 16739159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state fluorescence quenching applications for studying protein structure and dynamics.
    Mátyus L; Szöllosi J; Jenei A
    J Photochem Photobiol B; 2006 Jun; 83(3):223-36. PubMed ID: 16488620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor.
    dos Remedios CG; Moens PD
    J Struct Biol; 1995; 115(2):175-85. PubMed ID: 7577238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating protein structures determined by structural genomics consortia.
    Bhattacharya A; Tejero R; Montelione GT
    Proteins; 2007 Mar; 66(4):778-95. PubMed ID: 17186527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis.
    Brandes N; Welzel PB; Werner C; Kroh LW
    J Colloid Interface Sci; 2006 Jul; 299(1):56-69. PubMed ID: 16500671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.
    Li IT; Pham E; Truong K
    Biotechnol Lett; 2006 Dec; 28(24):1971-82. PubMed ID: 17021660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.
    Gharagozlou M; Boghaei DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1617-22. PubMed ID: 18701343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal correlations in denatured proteins: The dependence of fluorescence resonance energy transfer (FRET)-derived protein reconfiguration times on the location of the FRET probes.
    Makarov DE
    J Chem Phys; 2010 Jan; 132(3):035104. PubMed ID: 20095754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific two-color protein labeling for FRET studies using split inteins.
    Yang JY; Yang WY
    J Am Chem Soc; 2009 Aug; 131(33):11644-5. PubMed ID: 19645470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule tracking of sub-millisecond domain motion in calmodulin.
    Slaughter BD; Bieber-Urbauer RJ; Johnson CK
    J Phys Chem B; 2005 Jul; 109(26):12658-62. PubMed ID: 16852567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single molecule FRET for the study on structural dynamics of biomolecules.
    Sugawa M; Arai Y; Iwane AH; Ishii Y; Yanagida T
    Biosystems; 2007 Apr; 88(3):243-50. PubMed ID: 17276585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of fluorescence resonance energy transfer (FRET) in studying protein-induced DNA bending.
    Dragan AI; Privalov PL
    Methods Enzymol; 2008; 450():185-99. PubMed ID: 19152861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET-based measurement of GPCR conformational changes.
    Granier S; Kim S; Fung JJ; Bokoch MP; Parnot C
    Methods Mol Biol; 2009; 552():253-68. PubMed ID: 19513655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A FRET-based method for probing the conformational behavior of an intrinsically disordered repeat domain from Bordetella pertussis adenylate cyclase.
    Szilvay GR; Blenner MA; Shur O; Cropek DM; Banta S
    Biochemistry; 2009 Dec; 48(47):11273-82. PubMed ID: 19860484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.