These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 15657484)

  • 21. Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures?
    Garbuzynskiy SO; Melnik BS; Lobanov MY; Finkelstein AV; Galzitskaya OV
    Proteins; 2005 Jul; 60(1):139-47. PubMed ID: 15856480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FRAP and FRET methods to study nuclear receptors in living cells.
    van Royen ME; Dinant C; Farla P; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 505():69-96. PubMed ID: 19117140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single molecule fluorescence studies of surface-adsorbed fibronectin.
    Antia M; Islas LD; Boness DA; Baneyx G; Vogel V
    Biomaterials; 2006 Feb; 27(5):679-90. PubMed ID: 16095684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence approaches for determining protein conformations, interactions and mechanisms at membranes.
    Johnson AE
    Traffic; 2005 Dec; 6(12):1078-92. PubMed ID: 16262720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing protein conformations by in situ non-covalent fluorescence labeling.
    Strunk JJ; Gregor I; Becker Y; Lamken P; Lata S; Reichel A; Enderlein J; Piehler J
    Bioconjug Chem; 2009 Jan; 20(1):41-6. PubMed ID: 19102695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence coincidence spectroscopy for single-molecule fluorescence resonance energy-transfer measurements.
    Orte A; Clarke RW; Klenerman D
    Anal Chem; 2008 Nov; 80(22):8389-97. PubMed ID: 18855410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent developments in structural proteomics for protein structure determination.
    Liu HL; Hsu JP
    Proteomics; 2005 May; 5(8):2056-68. PubMed ID: 15846841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering FRET constructs using CFP and YFP.
    Shimozono S; Miyawaki A
    Methods Cell Biol; 2008; 85():381-93. PubMed ID: 18155471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence resonance energy transfer in studies of inter-chromophoric distances in biomolecules.
    Lankiewicz L; Malicka J; Wiczk W
    Acta Biochim Pol; 1997; 44(3):477-89. PubMed ID: 9511959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational substates of calmodulin revealed by single-pair fluorescence resonance energy transfer: influence of solution conditions and oxidative modification.
    Slaughter BD; Unruh JR; Allen MW; Bieber Urbauer RJ; Johnson CK
    Biochemistry; 2005 Mar; 44(10):3694-707. PubMed ID: 15751946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic analysis of G protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells.
    Lohse MJ; Hoffmann C; Nikolaev VO; Vilardaga JP; Bünemann M
    Adv Protein Chem; 2007; 74():167-88. PubMed ID: 17854658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein structure and dynamics from single-molecule fluorescence resonance energy transfer.
    Wang D; Geva E
    J Phys Chem B; 2005 Feb; 109(4):1626-34. PubMed ID: 16851134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subdomain-specific collapse of denatured staphylococcal nuclease revealed by single molecule fluorescence resonance energy transfer measurements.
    Liu P; Meng X; Qu P; Zhao XS; Wang CC
    J Phys Chem B; 2009 Sep; 113(35):12030-6. PubMed ID: 19678648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination.
    Snyder DA; Chen Y; Denissova NG; Acton T; Aramini JM; Ciano M; Karlin R; Liu J; Manor P; Rajan PA; Rossi P; Swapna GV; Xiao R; Rost B; Hunt J; Montelione GT
    J Am Chem Soc; 2005 Nov; 127(47):16505-11. PubMed ID: 16305237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stereospecific assignments of protein NMR resonances based on the tertiary structure and 2D/3D NOE data.
    Pristovsek P; Franzoni L
    J Comput Chem; 2006 Apr; 27(6):791-7. PubMed ID: 16526035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging calpain protease activity by multiphoton FRET in living mice.
    Stockholm D; Bartoli M; Sillon G; Bourg N; Davoust J; Richard I
    J Mol Biol; 2005 Feb; 346(1):215-22. PubMed ID: 15663939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Homogeneous immunoassay based on two-photon excitation fluorescence resonance energy transfer.
    Liu L; Shao M; Dong X; Yu X; Liu Z; He Z; Wang Q
    Anal Chem; 2008 Oct; 80(20):7735-41. PubMed ID: 18800850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective labeling of proteins by using protein farnesyltransferase.
    Duckworth BP; Zhang Z; Hosokawa A; Distefano MD
    Chembiochem; 2007 Jan; 8(1):98-105. PubMed ID: 17133644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computational tool for designing FRET protein biosensors by rigid-body sampling of their conformational space.
    Pham E; Chiang J; Li I; Shum W; Truong K
    Structure; 2007 May; 15(5):515-23. PubMed ID: 17502097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.