BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 15657886)

  • 1. Impact of reservoir potentials on the analyte behavior in microchip electrophoresis: computer simulation and experimental validation for DNA fragments.
    Xu Z; Nakamura Y; Hirokawa T
    Electrophoresis; 2005 Jan; 26(2):383-90. PubMed ID: 15657886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of a novel sample injection method (floating electrokinetic supercharging) for high-performance microchip electrophoresis of DNA fragments.
    Hirokawa T; Takayama Y; Arai A; Xu Z
    Electrophoresis; 2008 May; 29(9):1829-35. PubMed ID: 18393341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the electrokinetic supercharging preconcentration for high-sensitivity microchip gel electrophoresis on a cross-geometry microchip.
    Xu Z; Hirokawa T
    Electrophoresis; 2004 Jul; 25(14):2357-62. PubMed ID: 15274018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution DNA separation in microcapillary electrophoresis chips utilizing double-L injection techniques.
    Fu LM; Lin CH
    Electrophoresis; 2004 Nov; 25(21-22):3652-9. PubMed ID: 15565701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative pressure pinched sample injection for microchip-based electrophoresis.
    Zhang L; Yin X; Fang Z
    Lab Chip; 2006 Feb; 6(2):258-64. PubMed ID: 16450036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and variable-volume sample loading in sieving electrophoresis microchips using negative pressure combined with electrokinetic force.
    Qi LY; Yin XF; Zhang L; Wang M
    Lab Chip; 2008 Jul; 8(7):1137-44. PubMed ID: 18584090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of electrokinetic supercharging for high-sensitivity detection of DNA fragments in chip gel electrophoresis.
    Xu Z; Nishine T; Arai A; Hirokawa T
    Electrophoresis; 2004 Nov; 25(21-22):3875-81. PubMed ID: 15565672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of an electrokinetic double-focusing injection technique for microchip CE.
    Zhuang GS; Li G; Jin QH; Zhao JL; Yang MS
    Electrophoresis; 2006 Dec; 27(24):5009-19. PubMed ID: 17117387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further improvement of hydrostatic pressure sample injection for microchip electrophoresis.
    Luo Y; Zhang Q; Qin J; Lin B
    Electrophoresis; 2007 Dec; 28(24):4769-71. PubMed ID: 18072217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved hydrostatic pressure sample injection by tilting the microchip towards the disposable miniaturized CE device.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    Electrophoresis; 2008 Feb; 29(3):561-6. PubMed ID: 18186531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal configuration of capillary electrophoresis microchip with expansion chamber in separation channel.
    Tsai CH; Hung MF; Chang CL; Chen LW; Fu LM
    J Chromatogr A; 2006 Jul; 1121(1):120-8. PubMed ID: 16723132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and efficient isotachophoretic preconcentration in free solution coupled with gel electrophoresis separation on a microchip using a negative pressure sampling technique.
    Qi LY; Yin XF; Liu JH
    J Chromatogr A; 2009 May; 1216(20):4510-6. PubMed ID: 19328490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple approach to the hydrodynamic injection in microchip electrophoresis with electrochemical detection.
    Dossi N; Toniolo R; Susmel S; Pizzariello A; Bontempelli G
    Electrophoresis; 2010 Aug; 31(15):2541-7. PubMed ID: 20603828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A triple-injection method for microchip electrophoresis.
    Tabuchi M; Baba Y
    Electrophoresis; 2005 Jan; 26(2):376-82. PubMed ID: 15657885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-sensitivity capillary and microchip electrophoresis using electrokinetic supercharging preconcentration. Insight into the stacking mechanism via computer modeling.
    Xu Z; Timerbaev AR; Hirokawa T
    J Chromatogr A; 2009 Jan; 1216(4):660-70. PubMed ID: 18996535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel separation of multiple samples with negative pressure sample injection on a 3-D microfluidic array chip.
    Zhang L; Yin X
    Electrophoresis; 2007 Apr; 28(8):1281-8. PubMed ID: 17366485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-leakage sample plug injection scheme for crossform microfluidic capillary electrophoresis devices incorporating a restricted cross-channel intersection.
    Chang CL; Hou HH; Fu LM; Tsai CH
    Electrophoresis; 2008 Aug; 29(15):3135-44. PubMed ID: 18600833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of separation length and electric field strength for high-speed DNA electrophoresis.
    Ni Y; Dou X; Cheng S; Zhu Y
    Electrophoresis; 2011 Jan; 32(2):238-45. PubMed ID: 21254121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress of online sample preconcentration techniques in microchip electrophoresis.
    Sueyoshi K; Kitagawa F; Otsuka K
    J Sep Sci; 2008 Aug; 31(14):2650-66. PubMed ID: 18693308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.