BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15657895)

  • 1. A new type of migrating zone boundary in electrophoresis: 1. General description of boundary behavior based on electromigration dispersion velocity profiles.
    Gebauer P; Bocek P
    Electrophoresis; 2005 Jan; 26(2):453-62. PubMed ID: 15657895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new type of migrating zone boundary in electrophoresis: 2. Transient sample zone shapes.
    Gebauer P; Malá Z; Bocek P
    Electrophoresis; 2006 Feb; 27(3):519-25. PubMed ID: 16385600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regular properties of simple electrophoretic BGEs with multiprotic weak acids: discovery of complex hybrid system boundaries.
    Gebauer P; Malá Z; Slampová A; Bocek P
    Electrophoresis; 2008 Mar; 29(5):1067-76. PubMed ID: 18219651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of moving boundaries in electrophoretic systems with multivalent weak electrolytes: principles of non-Kohlrausch concentration adjustment.
    Malá Z; Gebauer P
    Electrophoresis; 2006 Dec; 27(23):4601-9. PubMed ID: 17091467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new type of migrating zone boundary in electrophoresis: 3. The hybrid boundary and stacking criteria.
    Gebauer P; Malá Z; Bocek P
    Electrophoresis; 2006 Mar; 27(5-6):962-7. PubMed ID: 16470780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nonlinear electrophoretic model for PeakMaster: part III. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Theory.
    Hruška V; Svobodová J; Beneš M; Gaš B
    J Chromatogr A; 2012 Dec; 1267():102-8. PubMed ID: 22818776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new electrophoretic focusing principle: focusing of nonamphoteric weak ionogenic analytes using inverse electromigration dispersion profiles.
    Gebauer P; Malá Z; Bocek P
    Electrophoresis; 2010 Mar; 31(5):886-92. PubMed ID: 20191550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System effects in sample self-stacking CZE: single analyte peak splitting of salt-containing samples.
    Malá Z; Gebauer P; Bocek P
    Electrophoresis; 2009 Mar; 30(5):866-74. PubMed ID: 19197903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boundary effects on the electrophoretic motion of cylindrical particles: concentrically and eccentrically-positioned particles in a capillary.
    Davison SM; Sharp KV
    J Colloid Interface Sci; 2006 Nov; 303(1):288-97. PubMed ID: 16920138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. System zones in capillary zone electrophoresis: moving boundaries caused by freely migrating hydrogen ions.
    Beckers JL; Bocek P
    Electrophoresis; 2005 Jan; 26(2):446-52. PubMed ID: 15657891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System zones in capillary zone electrophoresis: moving boundaries caused by freely migrating hydroxide ions.
    Beckers JL; Urbánek M; Bocek P
    Electrophoresis; 2005 May; 26(10):1869-73. PubMed ID: 15812835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental assessment of electromigration properties of background electrolytes in capillary zone electrophoresis.
    Bousková E; Presutti C; Gebauer P; Fanali S; Beckers JL; Bocek P
    Electrophoresis; 2004 Jan; 25(2):355-9. PubMed ID: 14743488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromigration oscillations occurring in ternary electrolyte systems with complex eigenmobilities, as predicted by theory and ascertained by capillary electrophoresis.
    Riesová M; Hruska V; Kenndler E; Gas B
    J Phys Chem B; 2009 Sep; 113(37):12439-46. PubMed ID: 19705834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Schizophrenic" behavior of zones in capillary zone electrophoresis: explanation of an old problem.
    Gebauer P; Desiderio C; Fanali S; Bocek P
    Electrophoresis; 1998 May; 19(5):701-6. PubMed ID: 9629902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review on the theory of moving reaction boundary, electromigration reaction methods and applications in isoelectric focusing and sample pre-concentration.
    Cao CX; Fan LY; Zhang W
    Analyst; 2008 Sep; 133(9):1139-57. PubMed ID: 18709186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of electrophoretic focusing on an inverse electromigration dispersion profile.
    Gebauer P
    Electrophoresis; 2020 Apr; 41(7-8):471-480. PubMed ID: 31550388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New methodology for capillary electrophoresis with ESI-MS detection: Electrophoretic focusing on inverse electromigration dispersion gradient. High-sensitivity analysis of sulfonamides in waters.
    Malá Z; Gebauer P; Boček P
    Anal Chim Acta; 2016 Sep; 935():249-57. PubMed ID: 27543034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic simulation of reactive separations in capillary electrophoresis.
    Newman CI; McGuffin VL
    Electrophoresis; 2005 Feb; 26(3):537-47. PubMed ID: 15690455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nonlinear electrophoretic model for PeakMaster: part IV. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Experimental verification.
    Beneš M; Svobodová J; Hruška V; Dvořák M; Zusková I; Gaš B
    J Chromatogr A; 2012 Dec; 1267():109-15. PubMed ID: 22789753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model of isotachophoresis (displacement electrophoresis) in tapered capillaries.
    Slais K
    Electrophoresis; 1995 Nov; 16(11):2060-8. PubMed ID: 8748736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.