These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15657986)

  • 1. New insights into DNA triplexes: residual twist and radial difference as measures of base triplet non-isomorphism and their implication to sequence-dependent non-uniform DNA triplex.
    Thenmalarchelvi R; Yathindra N
    Nucleic Acids Res; 2005; 33(1):43-55. PubMed ID: 15657986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base triplet nonisomorphism strongly influences DNA triplex conformation: effect of nonisomorphic G* GC and A* AT triplets and bending of DNA triplexes.
    Rathinavelan T; Yathindra N
    Biopolymers; 2006 Aug; 82(5):443-61. PubMed ID: 16493655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets.
    Goldsmith G; Rathinavelan T; Yathindra N
    PLoS One; 2016; 11(3):e0152102. PubMed ID: 27010368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Hoogsteen-like bases for configurational recognition of the T-A base pair by DNA triplex formation.
    Rothman JH; Richards WG
    Biopolymers; 1996 Dec; 39(6):795-812. PubMed ID: 8946801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Berenil binding to higher ordered nucleic acid structures: complexation with a DNA and RNA triple helix.
    Pilch DS; Kirolos MA; Breslauer KJ
    Biochemistry; 1995 Dec; 34(49):16107-24. PubMed ID: 8519768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations on parallel and antiparallel C.G*G triplexes.
    Kiran MR; Bansal M
    J Biomol Struct Dyn; 1998 Dec; 16(3):511-26. PubMed ID: 10052610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation study of DNA triplex formed by mixed sequences in solution.
    Ojha RP; Tiwari RK
    J Biomol Struct Dyn; 2002 Aug; 20(1):107-26. PubMed ID: 12144358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T.C.G triplet in an antiparallel purine.purine.pyrimidine DNA triplex. Conformational studies by NMR.
    Dittrich K; Gu J; Tinder R; Hogan M; Gao X
    Biochemistry; 1994 Apr; 33(14):4111-20. PubMed ID: 8155628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a triple helical DNA with a triplex-duplex junction.
    Rhee S; Han Zj; Liu K; Miles HT; Davies DR
    Biochemistry; 1999 Dec; 38(51):16810-5. PubMed ID: 10606513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the unusual properties of 2',5' nucleic acids and their complexes with RNA and DNA.
    Premraj BJ; Raja S; Yathindra N
    Biophys Chem; 2002 Mar; 95(3):253-72. PubMed ID: 12062384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulge defects in intramolecular pyrimidine.purine.pyrimidine DNA triplexes in solution.
    Wang Y; Patel DJ
    Biochemistry; 1995 Apr; 34(16):5696-704. PubMed ID: 7727429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction.
    Radhakrishnan I; de los Santos C; Patel DJ
    J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a G.T.A triplet in an intramolecular DNA triplex.
    Wang E; Malek S; Feigon J
    Biochemistry; 1992 May; 31(20):4838-46. PubMed ID: 1591244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural properties of hybrid triplex of polycation deoxyribonucleic S-methylthiourea (DNmt) strands with a complementary DNA strand, probed by nanosecond molecular dynamics.
    Luo J; Bruice TC
    J Biomol Struct Dyn; 2000 Feb; 17(4):629-43. PubMed ID: 10698101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand.
    de Bizemont T; Duval-Valentin G; Sun JS; Bisagni E; Garestier T; Hélène C
    Nucleic Acids Res; 1996 Mar; 24(6):1136-43. PubMed ID: 8604349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU.
    Gowers DM; Bijapur J; Brown T; Fox KR
    Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed study of sequence-specific DNA cleavage of triplex-forming oligonucleotides linked to 1,10-phenanthroline.
    Shimizu M; Inoue H; Ohtsuka E
    Biochemistry; 1994 Jan; 33(2):606-13. PubMed ID: 8286392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-stranded (triplex) DNAs (RNAs): do they have a role in biology?
    Morgan AR
    Indian J Biochem Biophys; 1994 Apr; 31(2):83-7. PubMed ID: 7523282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.