These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15658118)

  • 1. Phase 1 trial of oscillating field stimulation for complete spinal cord injury in humans.
    Tator CH
    J Neurosurg Spine; 2005 Jan; 2(1):1; discussion 1-2. PubMed ID: 15658118
    [No Abstract]   [Full Text] [Related]  

  • 2. Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial.
    Shapiro S; Borgens R; Pascuzzi R; Roos K; Groff M; Purvines S; Rodgers RB; Hagy S; Nelson P
    J Neurosurg Spine; 2005 Jan; 2(1):3-10. PubMed ID: 15658119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs.
    Borgens RB; Toombs JP; Breur G; Widmer WR; Waters D; Harbath AM; March P; Adams LG
    J Neurotrauma; 1999 Jul; 16(7):639-57. PubMed ID: 10447075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of oscillating field stimulation to treat human spinal cord injury.
    Shapiro S
    World Neurosurg; 2014; 81(5-6):830-5. PubMed ID: 23159651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field effects on human spinal injury: Is there a basis in the in vitro studies?
    Robinson KR; Cormie P
    Dev Neurobiol; 2008 Feb; 68(2):274-80. PubMed ID: 17963248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repairing the damaged spinal cord.
    McDonald JW
    Sci Am; 1999 Sep; 281(3):64-73. PubMed ID: 10467750
    [No Abstract]   [Full Text] [Related]  

  • 7. Acute interventions in spinal cord injury: what do we know, what should we do?
    Fehlings MG; Sekhon LH
    Clin Neurosurg; 2001; 48():226-42. PubMed ID: 11692644
    [No Abstract]   [Full Text] [Related]  

  • 8. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies.
    Belegu V; Oudega M; Gary DS; McDonald JW
    Neurosurg Clin N Am; 2007 Jan; 18(1):143-68, xi. PubMed ID: 17244561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.
    Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X
    Neuroscience; 2015 Apr; 291():260-71. PubMed ID: 25701712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tail nerve electrical stimulation combined with scar ablation and neural transplantation promotes locomotor recovery in rats with chronically contused spinal cord.
    Zhang SX; Huang F; Gates M; Holmberg EG
    Brain Res; 2012 May; 1456():22-35. PubMed ID: 22516110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guidelines for the management of acute cervical spine and spinal cord injuries.
    Hadley MN; Walters BC; Grabb PA; Oyesiku NM; Przybylski GJ; Resnick DK; Ryken TC; Mielke DH
    Clin Neurosurg; 2002; 49():407-98. PubMed ID: 12506565
    [No Abstract]   [Full Text] [Related]  

  • 12. Restoring function to the injured human spinal cord.
    Borgens RB
    Adv Anat Embryol Cell Biol; 2003; 171():III-IV, 1-155. PubMed ID: 12793206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined therapy of methylprednisolone and brain-derived neurotrophic factor promotes axonal regeneration and functional recovery after spinal cord injury in rats.
    Li L; Xu Q; Wu Y; Hu W; Gu P; Fu Z
    Chin Med J (Engl); 2003 Mar; 116(3):414-8. PubMed ID: 12781049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconnecting injured nerves.
    Cho M
    Nat Neurosci; 2009 Sep; 12(9):1085. PubMed ID: 19710648
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview.
    Hamid S; Hayek R
    Eur Spine J; 2008 Sep; 17(9):1256-69. PubMed ID: 18677518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a direct current electrical field to promote spinal-cord regeneration.
    Shen NJ; Wang SC
    J Reconstr Microsurg; 1999 Aug; 15(6):427-31. PubMed ID: 10480562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylprednisolone for acute spinal cord injury: not a standard of care.
    Hugenholtz H
    CMAJ; 2003 Apr; 168(9):1145-6. PubMed ID: 12719318
    [No Abstract]   [Full Text] [Related]  

  • 19. Repair of spinal cord injury by transplantation of olfactory ensheathing cells.
    Raisman G
    C R Biol; 2007; 330(6-7):557-60. PubMed ID: 17631453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenovirus vector-mediated in vivo gene transfer of brain-derived neurotrophic factor (BDNF) promotes rubrospinal axonal regeneration and functional recovery after complete transection of the adult rat spinal cord.
    Koda M; Hashimoto M; Murakami M; Yoshinaga K; Ikeda O; Yamazaki M; Koshizuka S; Kamada T; Moriya H; Shirasawa H; Sakao S; Ino H
    J Neurotrauma; 2004 Mar; 21(3):329-37. PubMed ID: 15115607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.