These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15658156)

  • 41. Understanding the effectiveness of precursor reductions in lowering 8-hr ozone concentrations.
    Reynolds SD; Blanchard CL; Ziman SD
    J Air Waste Manag Assoc; 2003 Feb; 53(2):195-205. PubMed ID: 12617293
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study.
    Chameides WL; Lindsay RW; Richardson J; Kiang CS
    Science; 1988 Sep; 241(4872):1473-5. PubMed ID: 3420404
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nighttime Chemistry and Morning Isoprene Can Drive Urban Ozone Downwind of a Major Deciduous Forest.
    Millet DB; Baasandorj M; Hu L; Mitroo D; Turner J; Williams BJ
    Environ Sci Technol; 2016 Apr; 50(8):4335-42. PubMed ID: 27010702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of model resolution on ozone in industrial volatile organic compound plumes.
    Henderson BH; Jeffries HE; Kim BU; Vizuete WG
    J Air Waste Manag Assoc; 2010 Sep; 60(9):1105-17. PubMed ID: 20863055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of photochemical pollution in summer and winter using a photochemical box model in the center of Tokyo, Japan.
    Huang H; Akustu Y; Arai M; Tamura M
    Chemosphere; 2001 Jul; 44(2):223-30. PubMed ID: 11444304
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Understanding the effectiveness of precursor reductions in lowering 8-hr ozone concentrations--Part II. The eastern United States.
    Reynolds SD; Blanchard CL; Ziman SD
    J Air Waste Manag Assoc; 2004 Nov; 54(11):1452-70. PubMed ID: 15587557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.
    Hogrefe C; Isukapalli SS; Tang X; Georgopoulos PG; He S; Zalewsky EE; Hao W; Ku JY; Key T; Sistla G
    J Air Waste Manag Assoc; 2011 Jan; 61(1):92-108. PubMed ID: 21305893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Weekday versus weekend activity patterns for ozone precursor emissions in California's South Coast Air Basin.
    Chinkin LR; Coe DL; Funk TH; Hafner HR; Roberts PT; Ryan PA; Lawson DR
    J Air Waste Manag Assoc; 2003 Jul; 53(7):829-43. PubMed ID: 12880071
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ozone precursor monitor for investigating air pollution.
    Ortman GC
    ISA Trans; 1982; 21(2):15-28. PubMed ID: 7107193
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China.
    Ling ZH; Guo H; Cheng HR; Yu YF
    Environ Pollut; 2011 Oct; 159(10):2310-9. PubMed ID: 21616570
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China.
    Zhang Y; Li R; Fu H; Zhou D; Chen J
    J Environ Sci (China); 2018 Sep; 71():233-248. PubMed ID: 30195682
    [TBL] [Abstract][Full Text] [Related]  

  • 52. C3-C12 non-methane hydrocarbons in subtropical Hong Kong: spatial-temporal variations, source-receptor relationships and photochemical reactivity.
    So KL; Wang T
    Sci Total Environ; 2004 Jul; 328(1-3):161-74. PubMed ID: 15207581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.
    Tang X; Wilson SR; Solomon KR; Shao M; Madronich S
    Photochem Photobiol Sci; 2011 Feb; 10(2):280-91. PubMed ID: 21253665
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Source profiles and ozone formation potentials of volatile organic compounds in three traffic tunnels in Kaohsiung, Taiwan.
    Chen KS; Lai CH; Ho YT
    J Air Waste Manag Assoc; 2003 Jan; 53(1):102-12. PubMed ID: 12568259
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of biogenic terpene emissions from Brassica napus on tropospheric ozone over Saxony (Germany): numerical investigation.
    Renner E; Münzenberg A
    Environ Sci Pollut Res Int; 2003; 10(3):147-53. PubMed ID: 12846375
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-objective analysis of ground-level ozone concentration control.
    Guariso G; Pirovano G; Volta M
    J Environ Manage; 2004 May; 71(1):25-33. PubMed ID: 15084357
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contributions of regional air pollutant emissions to ozone and fine particulate matter-related mortalities in eastern U.S. urban areas.
    Hou X; Strickland MJ; Liao KJ
    Environ Res; 2015 Feb; 137():475-84. PubMed ID: 25701729
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An examination of the 6:00 a.m.-9:00 a.m. measurements of ozone precursors in the New York City metropolitan area.
    Sistla G; Zalewsky E; Henry R
    J Air Waste Manag Assoc; 2002 Feb; 52(2):181-8. PubMed ID: 15143793
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimation of biogenic volatile organic compounds emissions in subtropical island--Taiwan.
    Chang KH; Chen TF; Huang HC
    Sci Total Environ; 2005 Jun; 346(1-3):184-99. PubMed ID: 15993693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Air quality modeling of interpollutant trading for ozone precursors in an urban area.
    Wang L; Allen DT; McDonald-Buller EC
    J Air Waste Manag Assoc; 2005 Oct; 55(10):1543-57. PubMed ID: 16295279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.