These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15658705)

  • 1. The temporal representation of speech in a nonlinear model of the guinea pig cochlea.
    Holmes SD; Sumner CJ; O'Mard LP; Meddis R
    J Acoust Soc Am; 2004 Dec; 116(6):3534-45. PubMed ID: 15658705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonlinear filter-bank model of the guinea-pig cochlear nerve: rate responses.
    Sumner CJ; O'Mard LP; Lopez-Poveda EA; Meddis R
    J Acoust Soc Am; 2003 Jun; 113(6):3264-74. PubMed ID: 12822799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The representation of the spectra and fundamental frequencies of steady-state single- and double-vowel sounds in the temporal discharge patterns of guinea pig cochlear-nerve fibers.
    Palmer AR
    J Acoust Soc Am; 1990 Sep; 88(3):1412-26. PubMed ID: 2229676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Representation of the vowel /epsilon/ in normal and impaired auditory nerve fibers: model predictions of responses in cats.
    Zilany MS; Bruce IC
    J Acoust Soc Am; 2007 Jul; 122(1):402-17. PubMed ID: 17614499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchrony capture filterbank: auditory-inspired signal processing for tracking individual frequency components in speech.
    Kumaresan R; Peddinti VK; Cariani P
    J Acoust Soc Am; 2013 Jun; 133(6):4290-310. PubMed ID: 23742379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide.
    Tan Q; Carney LH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2007-20. PubMed ID: 14587601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses to cochlear normalized speech stimuli in the auditory nerve of cat.
    Recio A; Rhode WS; Kiefte M; Kluender KR
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2213-8. PubMed ID: 12051441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A composite model of the auditory periphery for the processing of speech based on the filter response functions of single auditory-nerve fibers.
    Jenison RL; Greenberg S; Kluender KR; Rhode WS
    J Acoust Soc Am; 1991 Aug; 90(2 Pt 1):773-86. PubMed ID: 1939884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection.
    Heinz MG; Colburn HS; Carney LH
    J Acoust Soc Am; 2001 Oct; 110(4):2065-84. PubMed ID: 11681385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons.
    Palmer AR; Winter IM; Darwin CJ
    J Acoust Soc Am; 1986 Jan; 79(1):100-13. PubMed ID: 3944336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal responses of primarylike anteroventral cochlear nucleus units to the steady-state vowel /i/.
    Winter IM; Palmer AR
    J Acoust Soc Am; 1990 Sep; 88(3):1437-41. PubMed ID: 2172345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of cochlear processing for the formation of auditory brainstem and frequency following responses.
    Dau T
    J Acoust Soc Am; 2003 Feb; 113(2):936-50. PubMed ID: 12597187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pitch and voiced/unvoiced determination with an auditory model.
    Van Immerseel LM; Martens JP
    J Acoust Soc Am; 1992 Jun; 91(6):3511-26. PubMed ID: 1619127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human temporal auditory acuity as assessed by envelope following responses.
    Purcell DW; John SM; Schneider BA; Picton TW
    J Acoust Soc Am; 2004 Dec; 116(6):3581-93. PubMed ID: 15658709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved speech processing strategy for cochlear implants based on an active nonlinear filterbank model of the biological cochlea.
    Kim KH; Choi SJ; Kim JH; Kim DH
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):828-36. PubMed ID: 19272890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural encoding of single-formant stimuli in the cat. I. Responses of auditory nerve fibers.
    Wang X; Sachs MB
    J Neurophysiol; 1993 Sep; 70(3):1054-75. PubMed ID: 8229159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further studies on the dual-resonance nonlinear filter model of cochlear frequency selectivity: responses to tones.
    Lopez-Najera A; Lopez-Poveda EA; Meddis R
    J Acoust Soc Am; 2007 Oct; 122(4):2124-34. PubMed ID: 17902850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual filter model describing single-fiber responses to clicks in the normal and noise-damaged cochlea.
    Schoonhoven R; Keijzer J; Versnel H; Prijs VF
    J Acoust Soc Am; 1994 Apr; 95(4):2104-21. PubMed ID: 8201107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.