These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15658711)

  • 1. Relative contributions of temporal and place pitch cues to fundamental frequency discrimination in cochlear implantees.
    Laneau J; Wouters J; Moonen M
    J Acoust Soc Am; 2004 Dec; 116(6):3606-19. PubMed ID: 15658711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Better place-coding of the fundamental frequency in cochlear implants.
    Geurts L; Wouters J
    J Acoust Soc Am; 2004 Feb; 115(2):844-52. PubMed ID: 15000196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training of cochlear implant users to improve pitch perception in the presence of competing place cues.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Ear Hear; 2015; 36(2):e1-e13. PubMed ID: 25329372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pitch and loudness matching of unmodulated and modulated stimuli in cochlear implantees.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Hear Res; 2013 Aug; 302():32-49. PubMed ID: 23685148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of age on F0 discrimination and intonation perception in simulated electric and electroacoustic hearing.
    Souza P; Arehart K; Miller CW; Muralimanohar RK
    Ear Hear; 2011 Feb; 32(1):75-83. PubMed ID: 20739892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of Voice Pitch and Vocal-Tract Length in Cochlear Implant Users.
    Gaudrain E; Başkent D
    Ear Hear; 2018; 39(2):226-237. PubMed ID: 28799983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral and temporal cues to pitch in noise-excited vocoder simulations of continuous-interleaved-sampling cochlear implants.
    Green T; Faulkner A; Rosen S
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2155-64. PubMed ID: 12430827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musical pitch discrimination by cochlear implant users.
    Ping L; Yuan M; Feng H
    Ann Otol Rhinol Laryngol; 2012 May; 121(5):328-36. PubMed ID: 22724279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coding of the fundamental frequency in continuous interleaved sampling processors for cochlear implants.
    Geurts L; Wouters J
    J Acoust Soc Am; 2001 Feb; 109(2):713-26. PubMed ID: 11248975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of temporal cues to pitch in cochlear implants: effects on pitch ranking.
    Vandali AE; van Hoesel RJ
    J Acoust Soc Am; 2012 Jul; 132(1):392-402. PubMed ID: 22779486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rabbits use both spectral and temporal cues to discriminate the fundamental frequency of harmonic complexes with missing fundamentals.
    Wagner JD; Gelman A; Hancock KE; Chung Y; Delgutte B
    J Neurophysiol; 2022 Jan; 127(1):290-312. PubMed ID: 34879207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users.
    Fu QJ; Chinchilla S; Galvin JJ
    J Assoc Res Otolaryngol; 2004 Sep; 5(3):253-60. PubMed ID: 15492884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The discrimination of voice cues in simulations of bimodal electro-acoustic cochlear-implant hearing.
    Başkent D; Luckmann A; Ceha J; Gaudrain E; Tamati TN
    J Acoust Soc Am; 2018 Apr; 143(4):EL292. PubMed ID: 29716273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech prosody perception in cochlear implant users with and without residual hearing.
    Marx M; James C; Foxton J; Capber A; Fraysse B; Barone P; Deguine O
    Ear Hear; 2015; 36(2):239-48. PubMed ID: 25303861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The representation of the spectra and fundamental frequencies of steady-state single- and double-vowel sounds in the temporal discharge patterns of guinea pig cochlear-nerve fibers.
    Palmer AR
    J Acoust Soc Am; 1990 Sep; 88(3):1412-26. PubMed ID: 2229676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal Fine Structure Processing, Pitch, and Speech Perception in Adult Cochlear Implant Recipients.
    Dincer D'Alessandro H; Ballantyne D; Boyle PJ; De Seta E; DeVincentiis M; Mancini P
    Ear Hear; 2018; 39(4):679-686. PubMed ID: 29194080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations Between Pitch and Phoneme Perception in Cochlear Implant Users and Their Normal Hearing Peers.
    Goldsworthy RL
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):797-809. PubMed ID: 26373936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations on rate discrimination.
    Carlyon RP; Deeks JM
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1009-25. PubMed ID: 12243150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.