These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 15658714)

  • 1. Direct measurement of onset and offset phonation threshold pressure in normal subjects.
    Plant RL; Freed GL; Plant RE
    J Acoust Soc Am; 2004 Dec; 116(6):3640-6. PubMed ID: 15658714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of consonant manner and vowel height on intraoral pressure and articulatory contact at voicing offset and onset for voiceless obstruents.
    Koenig LL; Fuchs S; Lucero JC
    J Acoust Soc Am; 2011 May; 129(5):3233-44. PubMed ID: 21568425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerodynamics of the human larynx during vocal fold vibration.
    Plant RL
    Laryngoscope; 2005 Dec; 115(12):2087-100. PubMed ID: 16369149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Onset and offset phonation threshold flow in excised canine larynges.
    Regner MF; Tao C; Zhuang P; Jiang JJ
    Laryngoscope; 2008 Jul; 118(7):1313-7. PubMed ID: 18401267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa.
    Chan RW; Titze IR; Titze MR
    J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vocal fold collision threshold pressure: An alternative to phonation threshold pressure?
    Enflo L; Sundberg J
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):210-7. PubMed ID: 19916893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Vocal Effort from the Aerodynamics of Labial Fricatives: A Feasibility Study.
    Meynadier Y; El Hajj A; Pitermann M; Legou T; Giovanni A
    J Voice; 2018 Nov; 32(6):771.e15-771.e24. PubMed ID: 28916222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of vocal hyperfunction on relative fundamental frequency during voicing offset and onset.
    Stepp CE; Hillman RE; Heaton JT
    J Speech Lang Hear Res; 2010 Oct; 53(5):1220-6. PubMed ID: 20643798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On pressure-frequency relations in the excised larynx.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroglottography and laryngeal articulation in speech.
    Hong KH; Kim HK
    Folia Phoniatr Logop; 1997; 49(5):225-33. PubMed ID: 9311157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of phonation in the excised canine larynx.
    Yanagi E; Slavit DH; McCaffrey TV
    Otolaryngol Head Neck Surg; 1991 Oct; 105(4):586-95. PubMed ID: 1762795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
    Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of adjustment of expiratory effort in the control of vocal intensity: clinical assessment of phonatory function.
    Makiyama K; Yoshihashi H; Mogitate M; Kida A
    Otolaryngol Head Neck Surg; 2005 Apr; 132(4):641-6. PubMed ID: 15806061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonation Demonstrates Goal Dependence Under Unique Vocal Intensity and Aerobic Workload Conditions.
    Ziegler A; VanSwearingen J; Jakicic JM; Verdolini Abbott K
    J Speech Lang Hear Res; 2019 Aug; 62(8):2584-2600. PubMed ID: 31291159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a pressure target on laryngeal airway resistance in children.
    Zajac DJ
    J Commun Disord; 1998; 31(3):201-12; quiz 212-3. PubMed ID: 9621903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias.
    Braunschweig T; Flaschka J; Schelhorn-Neise P; Döllinger M
    Med Eng Phys; 2008 Jan; 30(1):59-66. PubMed ID: 17317268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Nov; 118(5):2798-801. PubMed ID: 16334896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.