BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15659184)

  • 1. Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification.
    Zuzuarregui A; Carrasco P; Palacios A; Julien A; del Olmo M
    J Appl Microbiol; 2005; 98(2):299-307. PubMed ID: 15659184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation.
    Pigeau GM; Inglis DL
    J Appl Microbiol; 2007 Nov; 103(5):1576-86. PubMed ID: 17953569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of stress response genes in wine strains with different fermentative behavior.
    Zuzuarregui A; del Olmo ML
    FEMS Yeast Res; 2004 May; 4(7):699-710. PubMed ID: 15093773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions.
    Jiménez-Martí E; Zuzuarregui A; Ridaura I; Lozano N; del Olmo M
    Int J Food Microbiol; 2009 Mar; 130(2):122-30. PubMed ID: 19217680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach for the improvement of stress resistance in wine yeasts.
    Cardona F; Carrasco P; Pérez-Ortín JE; del Olmo Ml; Aranda A
    Int J Food Microbiol; 2007 Feb; 114(1):83-91. PubMed ID: 17187885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection.
    Zuzuarregui A; del Olmo M
    Antonie Van Leeuwenhoek; 2004 May; 85(4):271-80. PubMed ID: 15028866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The vinification of partially dried grapes: a comparative fermentation study of Saccharomyces cerevisiae strains under high sugar stress.
    Malacrinò P; Tosi E; Caramia G; Prisco R; Zapparoli G
    Lett Appl Microbiol; 2005; 40(6):466-72. PubMed ID: 15892744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z; Chiva R; Rodríguez-Vargas S; Rández-Gil F; Mas A; Guillamón JM
    FEMS Yeast Res; 2008 Nov; 8(7):1137-46. PubMed ID: 18503542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FLO gene-dependent phenotypes in industrial wine yeast strains.
    Govender P; Bester M; Bauer FF
    Appl Microbiol Biotechnol; 2010 Apr; 86(3):931-45. PubMed ID: 20013339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.
    Aranda A; del Olmo Ml Ml
    Yeast; 2003 Jun; 20(8):747-59. PubMed ID: 12794936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between cell lipid content, gene expression and fermentative behaviour of two Saccharomyces cerevisiae wine strains.
    Zara G; Bardi L; Belviso S; Farris GA; Zara S; Budroni M
    J Appl Microbiol; 2008 Mar; 104(3):906-14. PubMed ID: 17961155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response.
    Jiménez-Martí E; Gomar-Alba M; Palacios A; Ortiz-Julien A; del Olmo ML
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1551-61. PubMed ID: 20941492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The heterologous expression of polysaccharidase-encoding genes with oenological relevance in Saccharomyces cerevisiae.
    van Rensburg P; Strauss ML; Lambrechts MG; Cordero Otero RR; Pretorius IS
    J Appl Microbiol; 2007 Dec; 103(6):2248-57. PubMed ID: 18045408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C; Nicaud JM; Barre P; Gaillardin C
    Yeast; 1997 Aug; 13(10):903-15. PubMed ID: 9271106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.
    Garre E; Raginel F; Palacios A; Julien A; Matallana E
    Int J Food Microbiol; 2010 Jan; 136(3):295-303. PubMed ID: 19914726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.
    Zuzuarregui A; Monteoliva L; Gil C; del Olmo Ml
    Appl Environ Microbiol; 2006 Jan; 72(1):836-47. PubMed ID: 16391125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex.
    Belloch C; Orlic S; Barrio E; Querol A
    Int J Food Microbiol; 2008 Feb; 122(1-2):188-95. PubMed ID: 18222562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.