These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 15659761)
1. Neuroblastoma cell-adapted yellow fever virus: mutagenesis of the E protein locus involved in persistent infection and its effects on virus penetration and spread. Vlaycheva L; Nickells M; Droll DA; Chambers TJ J Gen Virol; 2005 Feb; 86(Pt 2):413-421. PubMed ID: 15659761 [TBL] [Abstract][Full Text] [Related]
2. Neuroblastoma cell-adapted yellow fever 17D virus: characterization of a viral variant associated with persistent infection and decreased virus spread. Vlaycheva LA; Chambers TJ J Virol; 2002 Jun; 76(12):6172-84. PubMed ID: 12021351 [TBL] [Abstract][Full Text] [Related]
3. Yellow fever 17D virus: pseudo-revertant suppression of defective virus penetration and spread by mutations in domains II and III of the E protein. Vlaycheva L; Nickells M; Droll DA; Chambers TJ Virology; 2004 Sep; 327(1):41-9. PubMed ID: 15327896 [TBL] [Abstract][Full Text] [Related]
4. Mutation in a 17D-204 vaccine substrain-specific envelope protein epitope alters the pathogenesis of yellow fever virus in mice. Ryman KD; Ledger TN; Campbell GA; Watowich SJ; Barrett AD Virology; 1998 Apr; 244(1):59-65. PubMed ID: 9581778 [TBL] [Abstract][Full Text] [Related]
5. A single amino acid substitution in the envelope protein of chimeric yellow fever-dengue 1 vaccine virus reduces neurovirulence for suckling mice and viremia/viscerotropism for monkeys. Guirakhoo F; Zhang Z; Myers G; Johnson BW; Pugachev K; Nichols R; Brown N; Levenbook I; Draper K; Cyrek S; Lang J; Fournier C; Barrere B; Delagrave S; Monath TP J Virol; 2004 Sep; 78(18):9998-10008. PubMed ID: 15331733 [TBL] [Abstract][Full Text] [Related]
6. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice. Ryman KD; Xie H; Ledger TN; Campbell GA; Barrett AD Virology; 1997 Apr; 230(2):376-80. PubMed ID: 9143294 [TBL] [Abstract][Full Text] [Related]
7. Neuroadapted yellow fever virus strain 17D: a charged locus in domain III of the E protein governs heparin binding activity and neuroinvasiveness in the SCID mouse model. Nickells J; Cannella M; Droll DA; Liang Y; Wold WS; Chambers TJ J Virol; 2008 Dec; 82(24):12510-9. PubMed ID: 18842715 [TBL] [Abstract][Full Text] [Related]
8. Neuroadapted yellow fever virus 17D: determinants in the envelope protein govern neuroinvasiveness for SCID mice. Nickells M; Chambers TJ J Virol; 2003 Nov; 77(22):12232-42. PubMed ID: 14581560 [TBL] [Abstract][Full Text] [Related]
9. E protein domain III determinants of yellow fever virus 17D vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence. Lee E; Lobigs M J Virol; 2008 Jun; 82(12):6024-33. PubMed ID: 18400851 [TBL] [Abstract][Full Text] [Related]
10. Surface expression of an immunodominant malaria protein B cell epitope by yellow fever virus. Bonaldo MC; Garratt RC; Caufour PS; Freire MS; Rodrigues MM; Nussenzweig RS; Galler R J Mol Biol; 2002 Jan; 315(4):873-85. PubMed ID: 11812154 [TBL] [Abstract][Full Text] [Related]
11. Mutagenesis of the RGD motif in the yellow fever virus 17D envelope protein. van der Most RG; Corver J; Strauss JH Virology; 1999 Dec; 265(1):83-95. PubMed ID: 10603320 [TBL] [Abstract][Full Text] [Related]
13. Molecular and biological changes associated with HeLa cell attenuation of wild-type yellow fever virus. Dunster LM; Wang H; Ryman KD; Miller BR; Watowich SJ; Minor PD; Barrett AD Virology; 1999 Sep; 261(2):309-18. PubMed ID: 10497116 [TBL] [Abstract][Full Text] [Related]
14. Yellow fever virus NS2B-NS3 protease: characterization of charged-to-alanine mutant and revertant viruses and analysis of polyprotein-cleavage activities. Chambers TJ; Droll DA; Tang Y; Liang Y; Ganesh VK; Murthy KHM; Nickells M J Gen Virol; 2005 May; 86(Pt 5):1403-1413. PubMed ID: 15831952 [TBL] [Abstract][Full Text] [Related]
15. Conservation of the pentanucleotide motif at the top of the yellow fever virus 17D 3' stem-loop structure is not required for replication. Silva PAGC; Molenkamp R; Dalebout TJ; Charlier N; Neyts JH; Spaan WJM; Bredenbeek PJ J Gen Virol; 2007 Jun; 88(Pt 6):1738-1747. PubMed ID: 17485534 [TBL] [Abstract][Full Text] [Related]
17. Host-cell interaction of attenuated and wild-type strains of yellow fever virus can be differentiated at early stages of hepatocyte infection. Lefeuvre A; Contamin H; Decelle T; Fournier C; Lang J; Deubel V; Marianneau P Microbes Infect; 2006 May; 8(6):1530-8. PubMed ID: 16697681 [TBL] [Abstract][Full Text] [Related]
18. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target. Albarnaz JD; De Oliveira LC; Torres AA; Palhares RM; Casteluber MC; Rodrigues CM; Cardozo PL; De Souza AM; Pacca CC; Ferreira PC; Kroon EG; Nogueira ML; Bonjardim CA Antiviral Res; 2014 Nov; 111():82-92. PubMed ID: 25241249 [TBL] [Abstract][Full Text] [Related]
19. Molecular determinants of Yellow Fever Virus pathogenicity in Syrian Golden Hamsters: one mutation away from virulence. Klitting R; Roth L; Rey FA; de Lamballerie X Emerg Microbes Infect; 2018 Mar; 7(1):51. PubMed ID: 29593212 [TBL] [Abstract][Full Text] [Related]
20. Mutagenesis of the yellow fever virus NS2A/2B cleavage site: effects on proteolytic processing, viral replication, and evidence for alternative processing of the NS2A protein. Nestorowicz A; Chambers TJ; Rice CM Virology; 1994 Feb; 199(1):114-23. PubMed ID: 8116234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]