These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15660210)

  • 1. Sucrose utilisation in bacteria: genetic organisation and regulation.
    Reid SJ; Abratt VR
    Appl Microbiol Biotechnol; 2005 May; 67(3):312-21. PubMed ID: 15660210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bacterial phosphotransferase system: structure, function, regulation and evolution.
    Saier MH
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):325-7. PubMed ID: 11361062
    [No Abstract]   [Full Text] [Related]  

  • 3. The phosphotransferase system-dependent sucrose utilization regulon in enteropathogenic Escherichia coli strains is located in a variable chromosomal region containing iap sequences.
    Treviño-Quintanilla LG; Escalante A; Caro AD; Martínez A; González R; Puente JL; Bolívar F; Gosset G
    J Mol Microbiol Biotechnol; 2007; 13(1-3):117-25. PubMed ID: 17693719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: evidence for the phosphotransferase transport system.
    Jiang L; Cai J; Wang J; Liang S; Xu Z; Yang ST
    Bioresour Technol; 2010 Jan; 101(1):304-9. PubMed ID: 19726178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of carbon catabolite repression in bacteria.
    Deutscher J
    Curr Opin Microbiol; 2008 Apr; 11(2):87-93. PubMed ID: 18359269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity.
    Nojiri H; Shintani M; Omori T
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):154-74. PubMed ID: 14689248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Pleiotropic function of phosphoenolpyruvate-dependent phosphotransferase system in bacteria. Report 1].
    Gershanovich VN
    Mol Gen Mikrobiol Virusol; 2003; (1):14-26. PubMed ID: 12656043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence.
    Bogs J; Geider K
    J Bacteriol; 2000 Oct; 182(19):5351-8. PubMed ID: 10986236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial regulatory networks are extremely flexible in evolution.
    Lozada-Chávez I; Janga SC; Collado-Vides J
    Nucleic Acids Res; 2006; 34(12):3434-45. PubMed ID: 16840530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical control versus autoregulation of carbohydrate utilization in bacteria.
    Gunnewijk MG; van den Bogaard PT; Veenhoff LM; Heuberger EH; de Vos WM; Kleerebezem M; Kuipers OP; Poolman B
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):401-13. PubMed ID: 11361071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics.
    Cases I; Velázquez F; de Lorenzo V
    Res Microbiol; 2007; 158(8-9):666-70. PubMed ID: 17913467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotenoid biosynthetic pathway: molecular phylogenies and evolutionary behavior of crt genes in eubacteria.
    Phadwal K
    Gene; 2005 Jan; 345(1):35-43. PubMed ID: 15716108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic analysis of the phosphotransferase system in Clostridium botulinum.
    Mitchell WJ; Tewatia P; Meaden PG
    J Mol Microbiol Biotechnol; 2007; 12(1-2):33-42. PubMed ID: 17183209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular master on the move: the Tn916 family of mobile genetic elements.
    Roberts AP; Mullany P
    Trends Microbiol; 2009 Jun; 17(6):251-8. PubMed ID: 19464182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria.
    Postma PW; Lengeler JW
    Microbiol Rev; 1985 Sep; 49(3):232-69. PubMed ID: 3900671
    [No Abstract]   [Full Text] [Related]  

  • 16. A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization.
    Kullin B; Abratt VR; Reid SJ
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):975-81. PubMed ID: 16523284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes.
    Casola C; Lawing AM; Betrán E; Feschotte C
    Mol Biol Evol; 2007 Aug; 24(8):1872-88. PubMed ID: 17556756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential tissue/organ-dependent expression of two sucrose- and cold-responsive genes for UDP-glucose pyrophosphorylase in Populus.
    Meng M; Geisler M; Johansson H; Mellerowicz EJ; Karpinski S; Kleczkowski LA
    Gene; 2007 Mar; 389(2):186-95. PubMed ID: 17196771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mobile genetic elements for microbial degradation of environmental pollutants].
    Tsuda M; Sota M
    Tanpakushitsu Kakusan Koso; 2005 Oct; 50(12):1527-34. PubMed ID: 16218452
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.