These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 15661082)
1. Molecular mechanisms of severe acute respiratory syndrome (SARS). Groneberg DA; Hilgenfeld R; Zabel P Respir Res; 2005 Jan; 6(1):8. PubMed ID: 15661082 [TBL] [Abstract][Full Text] [Related]
2. SARS virus: the beginning of the unraveling of a new coronavirus. Lai MM J Biomed Sci; 2003; 10(6 Pt 2):664-75. PubMed ID: 14631105 [TBL] [Abstract][Full Text] [Related]
3. Molecular targets for diagnostics and therapeutics of severe acute respiratory syndrome (SARS-CoV). Suresh MR; Bhatnagar PK; Das D J Pharm Pharm Sci; 2008 Apr; 11(2):1s-13s. PubMed ID: 19203466 [TBL] [Abstract][Full Text] [Related]
4. Heterologous viral RNA export elements improve expression of severe acute respiratory syndrome (SARS) coronavirus spike protein and protective efficacy of DNA vaccines against SARS. Callendret B; Lorin V; Charneau P; Marianneau P; Contamin H; Betton JM; van der Werf S; Escriou N Virology; 2007 Jul; 363(2):288-302. PubMed ID: 17331558 [TBL] [Abstract][Full Text] [Related]
5. SARS vaccine: progress and challenge. Zhi Y; Wilson JM; Shen H Cell Mol Immunol; 2005 Apr; 2(2):101-5. PubMed ID: 16191415 [TBL] [Abstract][Full Text] [Related]
6. Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Tan YJ; Lim SG; Hong W Antiviral Res; 2006 Nov; 72(2):78-88. PubMed ID: 16820226 [TBL] [Abstract][Full Text] [Related]
7. Severe acute respiratory syndrome (SARS) coronavirus: application of monoclonal antibodies and development of an effective vaccine. Tsunetsugu-Yokota Y; Ohnishi K; Takemori T Rev Med Virol; 2006; 16(2):117-31. PubMed ID: 16518829 [TBL] [Abstract][Full Text] [Related]
9. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Cavanagh D Avian Pathol; 2003 Dec; 32(6):567-82. PubMed ID: 14676007 [TBL] [Abstract][Full Text] [Related]
10. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Bukreyev A; Lamirande EW; Buchholz UJ; Vogel LN; Elkins WR; St Claire M; Murphy BR; Subbarao K; Collins PL Lancet; 2004 Jun; 363(9427):2122-7. PubMed ID: 15220033 [TBL] [Abstract][Full Text] [Related]
11. Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. Regla-Nava JA; Nieto-Torres JL; Jimenez-Guardeño JM; Fernandez-Delgado R; Fett C; Castaño-Rodríguez C; Perlman S; Enjuanes L; DeDiego ML J Virol; 2015 Apr; 89(7):3870-87. PubMed ID: 25609816 [TBL] [Abstract][Full Text] [Related]
12. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. Honda-Okubo Y; Barnard D; Ong CH; Peng BH; Tseng CT; Petrovsky N J Virol; 2015 Mar; 89(6):2995-3007. PubMed ID: 25520500 [TBL] [Abstract][Full Text] [Related]
13. Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. Fett C; DeDiego ML; Regla-Nava JA; Enjuanes L; Perlman S J Virol; 2013 Jun; 87(12):6551-9. PubMed ID: 23576515 [TBL] [Abstract][Full Text] [Related]
14. SARS: future research and vaccine. Lau YL Paediatr Respir Rev; 2004 Dec; 5(4):300-3. PubMed ID: 15531254 [TBL] [Abstract][Full Text] [Related]
15. Development of a SARS vaccine: an industrial perspective on the global race against a global disease. Viret JF; Glück R; Moser C Expert Rev Vaccines; 2003 Aug; 2(4):465-7. PubMed ID: 14711331 [No Abstract] [Full Text] [Related]
16. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. See RH; Petric M; Lawrence DJ; Mok CPY; Rowe T; Zitzow LA; Karunakaran KP; Voss TG; Brunham RC; Gauldie J; Finlay BB; Roper RL J Gen Virol; 2008 Sep; 89(Pt 9):2136-2146. PubMed ID: 18753223 [TBL] [Abstract][Full Text] [Related]
17. Utility of the aged BALB/c mouse model to demonstrate prevention and control strategies for severe acute respiratory syndrome coronavirus (SARS-CoV). Vogel LN; Roberts A; Paddock CD; Genrich GL; Lamirande EW; Kapadia SU; Rose JK; Zaki SR; Subbarao K Vaccine; 2007 Mar; 25(12):2173-9. PubMed ID: 17227689 [TBL] [Abstract][Full Text] [Related]
18. Severe acute respiratory syndrome coronavirus pathogenesis, disease and vaccines: an update. Denison MR Pediatr Infect Dis J; 2004 Nov; 23(11 Suppl):S207-14. PubMed ID: 15577575 [TBL] [Abstract][Full Text] [Related]
19. Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference. Taylor JK; Coleman CM; Postel S; Sisk JM; Bernbaum JG; Venkataraman T; Sundberg EJ; Frieman MB J Virol; 2015 Dec; 89(23):11820-33. PubMed ID: 26378163 [TBL] [Abstract][Full Text] [Related]
20. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. Liu L; Wei Q; Lin Q; Fang J; Wang H; Kwok H; Tang H; Nishiura K; Peng J; Tan Z; Wu T; Cheung KW; Chan KH; Alvarez X; Qin C; Lackner A; Perlman S; Yuen KY; Chen Z JCI Insight; 2019 Feb; 4(4):. PubMed ID: 30830861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]