These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 15661504)

  • 1. Understanding agglomeration of indomethacin during the dissolution of micronised indomethacin mixtures through dissolution and de-agglomeration modeling approaches.
    Stewart PJ; Zhao FY
    Eur J Pharm Biopharm; 2005 Feb; 59(2):315-23. PubMed ID: 15661504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counter-intuitive enhancement in the dissolution of indomethacin with the incorporation of cohesive poorly water-soluble inorganic salt additives.
    Tay T; Allahham A; Morton DA; Stewart PJ
    Eur J Pharm Biopharm; 2011 Nov; 79(3):674-82. PubMed ID: 21703348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the de-agglomeration and dissolution of a poorly water soluble drug by decreasing the agglomerate strength of the cohesive powder.
    Allahham A; Stewart PJ; Das SC
    Int J Pharm; 2013 Nov; 457(1):101-9. PubMed ID: 24080334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding improved dissolution of indomethacin through the use of cohesive poorly water-soluble aluminium hydroxide: effects of concentration and particle size distribution.
    Tay T; Allahham A; Morton DA; Stewart PJ
    J Pharm Sci; 2011 Oct; 100(10):4269-80. PubMed ID: 21560127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug agglomeration and dissolution--what is the influence of powder mixing?
    Kale K; Hapgood K; Stewart P
    Eur J Pharm Biopharm; 2009 May; 72(1):156-64. PubMed ID: 19347972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniaturization of powder dissolution measurement and estimation of particle size.
    Avdeef A; Tsinman K; Tsinman O; Sun N; Voloboy D
    Chem Biodivers; 2009 Nov; 6(11):1796-811. PubMed ID: 19937817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term changes in drug agglomeration within interactive mixtures following blending.
    Andreou JG; Stewart PJ; Morton DA
    Int J Pharm; 2009 May; 372(1-2):1-11. PubMed ID: 19429267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolution of a poorly water-soluble drug dry coated with magnesium and sodium stearate.
    Tay T; Morton DA; Gengenbach TR; Stewart PJ
    Eur J Pharm Biopharm; 2012 Feb; 80(2):443-52. PubMed ID: 22036990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear-induced APAP de-agglomeration.
    Llusa M; Levin M; Snee RD; Muzzio FJ
    Drug Dev Ind Pharm; 2009 Dec; 35(12):1487-95. PubMed ID: 19929208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetics of cohesive powder de-agglomeration from three inhaler devices.
    Behara SR; Larson I; Kippax P; Morton DA; Stewart P
    Int J Pharm; 2011 Dec; 421(1):72-81. PubMed ID: 21963469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of excipients on solubility and dissolution of pharmaceuticals.
    Paus R; Prudic A; Ji Y
    Int J Pharm; 2015 May; 485(1-2):277-87. PubMed ID: 25749073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of process parameters and equipment on dry foam formulation properties using indomethacin as model drug.
    Sprunk A; Page S; Kleinebudde P
    Int J Pharm; 2013 Oct; 455(1-2):189-96. PubMed ID: 23891743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing dissolution testing methodologies for extended-release oral dosage forms with supersaturating properties. Case example: Solid dispersion matrix of indomethacin.
    Tajiri T; Morita S; Sakamoto R; Mimura H; Ozaki Y; Reppas C; Kitamura S
    Int J Pharm; 2015 Jul; 490(1-2):368-74. PubMed ID: 26022889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different preparation methods on the dissolution behaviour of amorphous indomethacin.
    Karmwar P; Graeser K; Gordon KC; Strachan CJ; Rades T
    Eur J Pharm Biopharm; 2012 Feb; 80(2):459-64. PubMed ID: 22019529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence investigation of a specific structure formed by aggregation of transglycosylated stevias: solubilizing effect of poorly water-soluble drugs.
    Uchiyama H; Tozuka Y; Asamoto F; Takeuchi H
    Eur J Pharm Sci; 2011 May; 43(1-2):71-7. PubMed ID: 21463678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions.
    Liu P; De Wulf O; Laru J; Heikkilä T; van Veen B; Kiesvaara J; Hirvonen J; Peltonen L; Laaksonen T
    AAPS PharmSciTech; 2013 Jun; 14(2):748-56. PubMed ID: 23615772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a standardized dissolution test method for inhaled pharmaceutical formulations.
    Son YJ; McConville JT
    Int J Pharm; 2009 Dec; 382(1-2):15-22. PubMed ID: 19665533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Microcentrifuge Dissolution Method as a Tool for Spray-Dried Dispersion.
    Wu B; Li J; Wang Y
    AAPS J; 2016 Mar; 18(2):346-53. PubMed ID: 26831250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems.
    Phillips DJ; Pygall SR; Cooper VB; Mann JC
    J Pharm Pharmacol; 2012 Nov; 64(11):1549-59. PubMed ID: 23058042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A discriminatory intrinsic dissolution study using UV area imaging analysis to gain additional insights into the dissolution behaviour of active pharmaceutical ingredients.
    Hulse WL; Gray J; Forbes RT
    Int J Pharm; 2012 Sep; 434(1-2):133-9. PubMed ID: 22626886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.