These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 15661757)

  • 21. The modulation of skeletal muscle glycosylation as a potential therapeutic intervention in muscular dystrophies.
    Brockington M; Muntoni F
    Acta Myol; 2005 Dec; 24(3):217-21. PubMed ID: 16629056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subcellular localization of fukutin and fukutin-related protein in muscle cells.
    Matsumoto H; Noguchi S; Sugie K; Ogawa M; Murayama K; Hayashi YK; Nishino I
    J Biochem; 2004 Jun; 135(6):709-12. PubMed ID: 15213246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan.
    Stevens E; Carss KJ; Cirak S; Foley AR; Torelli S; Willer T; Tambunan DE; Yau S; Brodd L; Sewry CA; Feng L; Haliloglu G; Orhan D; Dobyns WB; Enns GM; Manning M; Krause A; Salih MA; Walsh CA; Hurles M; Campbell KP; Manzini MC; ; Stemple D; Lin YY; Muntoni F
    Am J Hum Genet; 2013 Mar; 92(3):354-65. PubMed ID: 23453667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein glycosylation in disease: new insights into the congenital muscular dystrophies.
    Martin-Rendon E; Blake DJ
    Trends Pharmacol Sci; 2003 Apr; 24(4):178-83. PubMed ID: 12707004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Congenital muscular dystrophy with glycosylation defects of alpha-dystroglycan in Japan.
    Matsumoto H; Hayashi YK; Kim DS; Ogawa M; Murakami T; Noguchi S; Nonaka I; Nakazawa T; Matsuo T; Futagami S; Campbell KP; Nishino I
    Neuromuscul Disord; 2005 May; 15(5):342-8. PubMed ID: 15833426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional requirements for fukutin-related protein in the Golgi apparatus.
    Esapa CT; Benson MA; Schröder JE; Martin-Rendon E; Brockington M; Brown SC; Muntoni F; Kröger S; Blake DJ
    Hum Mol Genet; 2002 Dec; 11(26):3319-31. PubMed ID: 12471058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Journey into muscular dystrophies caused by abnormal glycosylation.
    Muntoni F
    Acta Myol; 2004 Sep; 23(2):79-84. PubMed ID: 15605948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LARGE2 generates the same xylose- and glucuronic acid-containing glycan structures as LARGE.
    Ashikov A; Buettner FF; Tiemann B; Gerardy-Schahn R; Bakker H
    Glycobiology; 2013 Mar; 23(3):303-9. PubMed ID: 23135544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aberrant glycosylation of alpha-dystroglycan and congenital muscular dystrophies.
    Endo T
    Acta Myol; 2005 Oct; 24(2):64-9. PubMed ID: 16550917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zebrafish models for human FKRP muscular dystrophies.
    Kawahara G; Guyon JR; Nakamura Y; Kunkel LM
    Hum Mol Genet; 2010 Feb; 19(4):623-33. PubMed ID: 19955119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aberrant glycosylation of alpha-dystroglycan causes defective binding of laminin in the muscle of chicken muscular dystrophy.
    Saito F; Blank M; Schröder J; Manya H; Shimizu T; Campbell KP; Endo T; Mizutani M; Kröger S; Matsumura K
    FEBS Lett; 2005 Apr; 579(11):2359-63. PubMed ID: 15848172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP).
    Thornhill P; Bassett D; Lochmüller H; Bushby K; Straub V
    Brain; 2008 Jun; 131(Pt 6):1551-61. PubMed ID: 18477595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycomarkers for muscular dystrophy.
    Hewitt JE
    Biochem Soc Trans; 2011 Jan; 39(1):336-9. PubMed ID: 21265799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular binding of fukutin and alpha-dystroglycan: relation to glycosylation of alpha-dystroglycan.
    Yamamoto T; Kawaguchi M; Sakayori N; Muramatsu F; Morikawa S; Kato Y; Shibata N; Kobayashi M
    Neurosci Res; 2006 Dec; 56(4):391-9. PubMed ID: 17005282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases.
    Rivinoja A; Hassinen A; Kokkonen N; Kauppila A; Kellokumpu S
    J Cell Physiol; 2009 Jul; 220(1):144-54. PubMed ID: 19277980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transgenic overexpression of LARGE induces α-dystroglycan hyperglycosylation in skeletal and cardiac muscle.
    Brockington M; Torelli S; Sharp PS; Liu K; Cirak S; Brown SC; Wells DJ; Muntoni F
    PLoS One; 2010 Dec; 5(12):e14434. PubMed ID: 21203384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel FKRP mutation in congenital muscular dystrophy disrupts the dystrophin glycoprotein complex.
    MacLeod H; Pytel P; Wollmann R; Chelmicka-Schorr E; Silver K; Anderson RB; Waggoner D; McNally EM
    Neuromuscul Disord; 2007 Apr; 17(4):285-9. PubMed ID: 17336067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of defective glycosylation in congenital muscular dystrophy.
    Schachter H; Vajsar J; Zhang W
    Glycoconj J; 2004; 20(5):291-300. PubMed ID: 15229394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defect in glycosylation that causes muscular dystrophy.
    Endo T; Manya H
    Methods Enzymol; 2006; 417():137-52. PubMed ID: 17132503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exogenous expression of the glycosyltransferase LARGE1 restores α-dystroglycan matriglycan and laminin binding in rhabdomyosarcoma.
    Beltrán D; Anderson ME; Bharathy N; Settelmeyer TP; Svalina MN; Bajwa Z; Shern JF; Gultekin SH; Cuellar MA; Yonekawa T; Keller C; Campbell KP
    Skelet Muscle; 2019 May; 9(1):11. PubMed ID: 31054580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.