BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 15661818)

  • 21. Depression of transmitter release at synapses in the rat superior cervical ganglion: the role of transmitter depletion.
    Lin YQ; Graham K; Bennett MR
    Auton Neurosci; 2001 Apr; 88(1-2):16-24. PubMed ID: 11474542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noradrenaline excites and inhibits GABAergic transmission in parvocellular neurons of rat hypothalamic paraventricular nucleus.
    Han SK; Chong W; Li LH; Lee IS; Murase K; Ryu PD
    J Neurophysiol; 2002 May; 87(5):2287-96. PubMed ID: 11976368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disabling the Gβγ-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes.
    Zurawski Z; Thompson Gray AD; Brady LJ; Page B; Church E; Harris NA; Dohn MR; Yim YY; Hyde K; Mortlock DP; Jones CK; Winder DG; Alford S; Hamm HE
    Sci Signal; 2019 Feb; 12(569):. PubMed ID: 30783011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple G-protein betagamma combinations produce voltage-dependent inhibition of N-type calcium channels in rat superior cervical ganglion neurons.
    Ruiz-Velasco V; Ikeda SR
    J Neurosci; 2000 Mar; 20(6):2183-91. PubMed ID: 10704493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms underlying presynaptic inhibition through alpha 2-adrenoceptors in guinea-pig submucosal neurones.
    Shen KZ; Surprenant A
    J Physiol; 1990 Dec; 431():609-28. PubMed ID: 1983122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Presynaptic inhibition by α2 receptor/adenylate cyclase/PDE4 complex at retinal rod bipolar synapse.
    Dong CJ; Guo Y; Ye Y; Hare WA
    J Neurosci; 2014 Jul; 34(28):9432-40. PubMed ID: 25009274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A2A adenosine-receptor-mediated facilitation of noradrenaline release in rat tail artery involves protein kinase C activation and betagamma subunits formed after alpha2-adrenoceptor activation.
    Fresco P; Oliveira JM; Kunc F; Soares AS; Rocha-Pereira C; Gonçalves J; Diniz C
    Neurochem Int; 2007 Jul; 51(1):47-56. PubMed ID: 17493708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Presynaptic modulation of transmitter release via alpha2-adrenoceptors: nonsynaptic interactions.
    Vizi ES
    Acta Biol Hung; 1999; 50(1-3):287-95. PubMed ID: 10574448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compartmentalization of the GABAB receptor signaling complex is required for presynaptic inhibition at hippocampal synapses.
    Laviv T; Vertkin I; Berdichevsky Y; Fogel H; Riven I; Bettler B; Slesinger PA; Slutsky I
    J Neurosci; 2011 Aug; 31(35):12523-32. PubMed ID: 21880914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Promiscuous G-Protein-Coupled Receptor Inhibition of Transient Receptor Potential Melastatin 3 Ion Channels by Gβγ Subunits.
    Alkhatib O; da Costa R; Gentry C; Quallo T; Bevan S; Andersson DA
    J Neurosci; 2019 Oct; 39(40):7840-7852. PubMed ID: 31451581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for a presynaptic inhibitory action of 5-hydroxytryptamine in a mammalian sympathetic ganglion.
    Dun NJ; Karczmar AG
    J Pharmacol Exp Ther; 1981 Jun; 217(3):714-8. PubMed ID: 6112264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of an indene-derivative, TN-871, on synaptic transmission in a sympathetic ganglion: presynaptic actions on neurotransmitter release.
    Shen YL; Hirai K; Katayama Y
    Bull Tokyo Med Dent Univ; 1995 Mar; 42(1):19-29. PubMed ID: 7895315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the mechanism for acetylcholine release at the synapse formed between rat sympathetic neurons in culture.
    Mochida S; Nonomura Y; Kobayashi H
    Microsc Res Tech; 1994 Oct; 29(2):94-102. PubMed ID: 7812040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion.
    Dodson PD; Billups B; Rusznák Z; Szûcs G; Barker MC; Forsythe ID
    J Physiol; 2003 Jul; 550(Pt 1):27-33. PubMed ID: 12777451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A switch between two modes of synaptic transmission mediated by presynaptic inhibition.
    Coleman MJ; Meyrand P; Nusbaum MP
    Nature; 1995 Nov; 378(6556):502-5. PubMed ID: 7477408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of synaptic transmission and G protein modulation by synthetic CaV2.2 Ca²+ channel peptides.
    Bucci G; Mochida S; Stephens GJ
    J Physiol; 2011 Jul; 589(Pt 13):3085-101. PubMed ID: 21521766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptic Integration of Subquantal Neurotransmission by Colocalized G Protein-Coupled Receptors in Presynaptic Terminals.
    Church E; Hamid E; Zurawski Z; Potcoava M; Flores-Barrera E; Caballero A; Tseng KY; Alford S
    J Neurosci; 2022 Feb; 42(6):980-1000. PubMed ID: 34949691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits.
    Ikeda SR
    Nature; 1996 Mar; 380(6571):255-8. PubMed ID: 8637575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developmental enhancement of alpha2-adrenoceptor-mediated suppression of inhibitory synaptic transmission onto mouse cerebellar Purkinje cells.
    Hirono M; Matsunaga W; Chimura T; Obata K
    Neuroscience; 2008 Sep; 156(1):143-54. PubMed ID: 18691636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substance P mediates synaptic transmission between rat myenteric neurones in cell culture.
    Willard AL
    J Physiol; 1990 Jul; 426():453-71. PubMed ID: 1700107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.