These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 15662619)
1. Determination of the distribution of consolidants and interpretation of mercury porosimetry data in a sandstone porous network using LSCM. Zoghlami K; Gómez-Gras D Microsc Res Tech; 2004 Dec; 65(6):270-5. PubMed ID: 15662619 [TBL] [Abstract][Full Text] [Related]
2. Laser scanning confocal microscopy characterization of water repellent distribution in a sandstone pore network. Zoghlami K; Gómez-Gras D; Corbella M; Darragi F Microsc Res Tech; 2008 Nov; 71(11):816-21. PubMed ID: 18767050 [TBL] [Abstract][Full Text] [Related]
3. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets]. Szepes A; Kovács J; Szabóné Revész P Acta Pharm Hung; 2006; 76(3):119-25. PubMed ID: 17094658 [TBL] [Abstract][Full Text] [Related]
4. The influence of mercury contact angle, surface tension, and retraction mechanism on the interpretation of mercury porosimetry data. Rigby SP; Edler KJ J Colloid Interface Sci; 2002 Jun; 250(1):175-90. PubMed ID: 16290649 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Macroscopic Structural Disorder in Porous Media Using Mercury Porosimetry. Rigby SP; Fletcher RS; Riley SN J Colloid Interface Sci; 2001 Aug; 240(1):190-210. PubMed ID: 11446801 [TBL] [Abstract][Full Text] [Related]
6. Demineralized dentin 3D porosity and pore size distribution using mercury porosimetry. Vennat E; Bogicevic C; Fleureau JM; Degrange M Dent Mater; 2009 Jun; 25(6):729-35. PubMed ID: 19174308 [TBL] [Abstract][Full Text] [Related]
7. Characterization of highly porous polymeric materials with pore diameters larger than 100 nm by mercury porosimetry and X-ray scattering methods. Egger CC; du Fresne C; Raman VI; Schädler V; Frechen T; Roth SV; Müller-Buschbaum P Langmuir; 2008 Jun; 24(11):5877-87. PubMed ID: 18442280 [TBL] [Abstract][Full Text] [Related]
8. Pore size distribution in tablets measured with a morphological sieve. Wu YS; van Vliet LJ; Frijlink HW; van der Voort Maarschalk K Int J Pharm; 2007 Sep; 342(1-2):176-83. PubMed ID: 17580106 [TBL] [Abstract][Full Text] [Related]
9. On the characterization of porosity in PTFE-carbon composite implant materials by mercury porosimetry. Dehl RE J Biomed Mater Res; 1982 Sep; 16(5):715-9. PubMed ID: 7130222 [TBL] [Abstract][Full Text] [Related]
10. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption. Thommes M; Skudas R; Unger KK; Lubda D J Chromatogr A; 2008 May; 1191(1-2):57-66. PubMed ID: 18423477 [TBL] [Abstract][Full Text] [Related]
11. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering. Safinia L; Mantalaris A; Bismarck A Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583 [TBL] [Abstract][Full Text] [Related]
12. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids. Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767 [TBL] [Abstract][Full Text] [Related]
13. Quantification of Spatial Correlation in Porous Media and Its Effect on Mercury Porosimetry. Bryant S; Mason G; Mellor D J Colloid Interface Sci; 1996 Jan; 177(1):88-100. PubMed ID: 10479420 [TBL] [Abstract][Full Text] [Related]
14. Angstrom-to-millimeter characterization of sedimentary rock microstructure. Radlinski AP; Ioannidis MA; Hinde AL; Hainbuchner M; Baron M; Rauch H; Kline SR J Colloid Interface Sci; 2004 Jun; 274(2):607-12. PubMed ID: 15144836 [TBL] [Abstract][Full Text] [Related]
15. Optical porosimetry and investigations of the porosity experienced by light interacting with porous media. Svensson T; Alerstam E; Johansson J; Andersson-Engels S Opt Lett; 2010 Jun; 35(11):1740-2. PubMed ID: 20517400 [TBL] [Abstract][Full Text] [Related]
16. A thermal porosimetry method to estimate pore size distribution in highly porous insulating materials. Félix V; Jannot Y; Degiovanni A Rev Sci Instrum; 2012 May; 83(5):054903. PubMed ID: 22667640 [TBL] [Abstract][Full Text] [Related]
18. Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns. Greiderer A; Trojer L; Huck CW; Bonn GK J Chromatogr A; 2009 Nov; 1216(45):7747-54. PubMed ID: 19762035 [TBL] [Abstract][Full Text] [Related]
19. A multi-flowpath model for the interpretation of immiscible displacement experiments in heterogeneous soil columns. Aggelopoulos CA; Tsakiroglou CD J Contam Hydrol; 2009 Apr; 105(3-4):146-60. PubMed ID: 19178982 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes. Manchón-Vizuete E; Macías-García A; Nadal Gisbert A; Fernández-González C; Gómez-Serrano V J Hazard Mater; 2005 Mar; 119(1-3):231-8. PubMed ID: 15752870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]