These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Analysis of mercury porosimetry for the evaluation of pore shape and intrusion-extrusion hysteresis. Shively ML J Pharm Sci; 1991 Apr; 80(4):376-9. PubMed ID: 1650824 [TBL] [Abstract][Full Text] [Related]
26. Noninvasive 3D vital imaging and characterization of notochordal cells of the intervertebral disc by femtosecond near-infrared two-photon laser scanning microscopy and spatial-volume rendering. Guehring T; Urban JP; Cui Z; Tirlapur UK Microsc Res Tech; 2008 Apr; 71(4):298-304. PubMed ID: 18189326 [TBL] [Abstract][Full Text] [Related]
27. 4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT. Dewanckele J; De Kock T; Boone MA; Cnudde V; Brabant L; Boone MN; Fronteau G; Van Hoorebeke L; Jacobs P Sci Total Environ; 2012 Feb; 416():436-48. PubMed ID: 22225825 [TBL] [Abstract][Full Text] [Related]
28. Dynamic aspects of mercury porosimetry: a lattice model study. Porcheron F; Monson PA Langmuir; 2005 Mar; 21(7):3179-86. PubMed ID: 15780002 [TBL] [Abstract][Full Text] [Related]
29. Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics. Omae H; Mochizuki Y; Yokoya S; Adachi N; Ochi M J Biomed Mater Res A; 2006 Nov; 79(2):329-37. PubMed ID: 16817208 [TBL] [Abstract][Full Text] [Related]
30. A comparison of experimental and simulated propagators in porous media using confocal laser scanning microscopy, lattice Boltzmann hydrodynamic simulations and nuclear magnetic resonance. Harris RJ; Sederman AJ; Mantle MD; Crawshaw J; Johns ML Magn Reson Imaging; 2005 Feb; 23(2):355-7. PubMed ID: 15833646 [TBL] [Abstract][Full Text] [Related]
31. MF-DFT and experimental investigations of the origins of hysteresis in mercury porosimetry of silica materials. Rigby SP; Chigada PI Langmuir; 2010 Jan; 26(1):241-8. PubMed ID: 19670898 [TBL] [Abstract][Full Text] [Related]
32. A Hierarchical Structural Model for the Interpretation of Mercury Porosimetry and Nitrogen Sorption. Rigby SP J Colloid Interface Sci; 2000 Apr; 224(2):382-396. PubMed ID: 10727351 [TBL] [Abstract][Full Text] [Related]
33. Unified method for the total pore volume and pore size distribution of hierarchical zeolites from argon adsorption and mercury intrusion. Kenvin J; Jagiello J; Mitchell S; Pérez-Ramírez J Langmuir; 2015 Feb; 31(4):1242-7. PubMed ID: 25603366 [TBL] [Abstract][Full Text] [Related]
34. Magnetization evolution in network models of porous rock under conditions of drainage and imbibition. Chang D; Ioannidis MA J Colloid Interface Sci; 2002 Sep; 253(1):159-70. PubMed ID: 16290842 [TBL] [Abstract][Full Text] [Related]
35. Comparison of Latest and Innovative Silica-Based Consolidants for Volcanic Stones. Colella A; Capasso I; Iucolano F Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066248 [TBL] [Abstract][Full Text] [Related]
36. Relationship between the Size of the Samples and the Interpretation of the Mercury Intrusion Results of an Artificial Sandstone. Dong H; Zhang H; Zuo Y; Gao P; Ye G Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29382067 [TBL] [Abstract][Full Text] [Related]
37. Pore network modelling of the behaviour of a solute in chromatography media: transient and steady-state diffusion properties. Bryntesson LM J Chromatogr A; 2002 Feb; 945(1-2):103-15. PubMed ID: 11860128 [TBL] [Abstract][Full Text] [Related]
38. Mercury porosimetry of mannitol tablets: effect of scanning speed and moisture. Westermarck S; Juppo AM; Yliruusi J Pharm Dev Technol; 2000; 5(2):181-8. PubMed ID: 10810748 [TBL] [Abstract][Full Text] [Related]
39. Mercury Porosimetry: Contact Angle Hysteresis of Materials with Controlled Pore Structure. Salmas C; Androutsopoulos G J Colloid Interface Sci; 2001 Jul; 239(1):178-189. PubMed ID: 11397062 [TBL] [Abstract][Full Text] [Related]