BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 15663326)

  • 1. Artificial neural network technologies to identify biomarkers for therapeutic intervention.
    Bicciato S
    Curr Opin Mol Ther; 2004 Dec; 6(6):616-23. PubMed ID: 15663326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern identification and classification in gene expression data using an autoassociative neural network model.
    Bicciato S; Pandin M; Didonè G; Di Bello C
    Biotechnol Bioeng; 2003 Mar; 81(5):594-606. PubMed ID: 12514809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach.
    Lancashire LJ; Rees RC; Ball GR
    Artif Intell Med; 2008 Jun; 43(2):99-111. PubMed ID: 18420392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An introduction to artificial neural networks in bioinformatics--application to complex microarray and mass spectrometry datasets in cancer studies.
    Lancashire LJ; Lemetre C; Ball GR
    Brief Bioinform; 2009 May; 10(3):315-29. PubMed ID: 19307287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular profiling approaches for identifying novel biomarkers.
    Bailey WJ; Ulrich R
    Expert Opin Drug Saf; 2004 Mar; 3(2):137-51. PubMed ID: 15006720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive neural networks for gene expression data analysis.
    Tan AH; Pan H
    Neural Netw; 2005 Apr; 18(3):297-306. PubMed ID: 15896577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression profiles of breast cancer obtained from core cut biopsies before neoadjuvant docetaxel, adriamycin, and cyclophoshamide chemotherapy correlate with routine prognostic markers and could be used to identify predictive signatures.
    Rody A; Karn T; Gätje R; Kourtis K; Minckwitz G; Loibl S; Munnes M; Ruckhäberle E; Holtrich U; Kaufmann M; Ahr A
    Zentralbl Gynakol; 2006 Apr; 128(2):76-81. PubMed ID: 16673249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential network expression during drug and stress response.
    Cabusora L; Sutton E; Fulmer A; Forst CV
    Bioinformatics; 2005 Jun; 21(12):2898-905. PubMed ID: 15840709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning methods for predictive proteomics.
    Barla A; Jurman G; Riccadonna S; Merler S; Chierici M; Furlanello C
    Brief Bioinform; 2008 Mar; 9(2):119-28. PubMed ID: 18310105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Small but high throughput: how "tissue-microarrays" became a favorite tool for pathologists and scientists].
    Jacquemier J; Ginestier C; Charafe-Jauffret E; Bertucci F; Bege T; Geneix J; Birnbaum D
    Ann Pathol; 2003 Dec; 23(6):623-32. PubMed ID: 15094604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LICORN: learning cooperative regulation networks from gene expression data.
    Elati M; Neuvial P; Bolotin-Fukuhara M; Barillot E; Radvanyi F; Rouveirol C
    Bioinformatics; 2007 Sep; 23(18):2407-14. PubMed ID: 17720703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial neural networks and decision tree model analysis of liver cancer proteomes.
    Luk JM; Lam BY; Lee NP; Ho DW; Sham PC; Chen L; Peng J; Leng X; Day PJ; Fan ST
    Biochem Biophys Res Commun; 2007 Sep; 361(1):68-73. PubMed ID: 17644064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Where are we in genomics?
    Hocquette JF
    J Physiol Pharmacol; 2005 Jun; 56 Suppl 3():37-70. PubMed ID: 16077195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial biomarkers: From early toxicology assays to patient population profiling.
    Koop R
    Drug Discov Today; 2005 Jun; 10(11):781-8. PubMed ID: 15922936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An elastic network model to identify characteristic stress response genes.
    Schneckener S; Görlitz L; Ellinger-Ziegelbauer H; Ahr HJ; Schuppert A
    Comput Biol Chem; 2010 Jun; 34(3):193-202. PubMed ID: 20643583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of critical genes in microarray experiments by a Neuro-Fuzzy approach.
    Chen CF; Feng X; Szeto J
    Comput Biol Chem; 2006 Oct; 30(5):372-81. PubMed ID: 16987708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated expressional analysis: application to the drug discovery process.
    Ilyin SE; Horowitz D; Belkowski SM; Xin H; Eckardt AJ; Darrow AL; Chen C; Maley D; D'Andrea M; Plata-Salamán CR; Derian CK
    Methods; 2005 Nov; 37(3):280-8. PubMed ID: 16308157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery.
    Kolch W; Neusüss C; Pelzing M; Mischak H
    Mass Spectrom Rev; 2005; 24(6):959-77. PubMed ID: 15747373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating time-course microarray gene expression profiles with cytotoxicity for identification of biomarkers in primary rat hepatocytes exposed to cadmium.
    Tan Y; Shi L; Hussain SM; Xu J; Tong W; Frazier JM; Wang C
    Bioinformatics; 2006 Jan; 22(1):77-87. PubMed ID: 16249259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.