These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 15664271)

  • 41. In vitro development and characterization of a manatee bronchial cell line.
    Sweat JM; Johnson CM; Gibbs EP
    In Vitro Cell Dev Biol Anim; 2003; 39(5-6):249-56. PubMed ID: 12841797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface.
    Nalayanda DD; Puleo C; Fulton WB; Sharpe LM; Wang TH; Abdullah F
    Biomed Microdevices; 2009 Oct; 11(5):1081-9. PubMed ID: 19484389
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly efficient genome editing in primary human bronchial epithelial cells differentiated at air-liquid interface.
    Rapiteanu R; Karagyozova T; Zimmermann N; Singh K; Wayne G; Martufi M; Belyaev NN; Hessel EM; Michalovich D; Macarron R; Rowan WC; Cairns WJ; Roger J; Betts J; Beinke S; Maratou K
    Eur Respir J; 2020 May; 55(5):. PubMed ID: 32060058
    [No Abstract]   [Full Text] [Related]  

  • 44. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells.
    Hagiwara M; Maruta N; Marumoto M
    Tissue Eng Part C Methods; 2017 Jun; 23(6):323-332. PubMed ID: 28471293
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of MRP transporters in regulating antimicrobial drug inefficacy and oxidative stress-induced pathogenesis during HIV-1 and TB infections.
    Roy U; Barber P; Tse-Dinh YC; Batrakova EV; Mondal D; Nair M
    Front Microbiol; 2015; 6():948. PubMed ID: 26441882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Method for Culturing 3D Tumoroids of Lung Adenocarcinoma Cells at the Air-Liquid Interface.
    Movia D; Prina-Mello A
    Methods Mol Biol; 2023; 2645():173-178. PubMed ID: 37202618
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of the feasibility to develop a fast and easy reproducible 3D bronchial model growing at the air-liquid interface: Which critical culture parameters must be controlled?
    Lechanteur A; Evrard B; Piel G
    Eur J Pharm Biopharm; 2019 Nov; 144():2-10. PubMed ID: 31493512
    [No Abstract]   [Full Text] [Related]  

  • 48. Calu-3 model under AIC and LCC conditions and application for protein permeability studies.
    Marušić M; Djurdjevič I; Drašlar K; Caserman S
    Acta Chim Slov; 2014; 61(1):100-9. PubMed ID: 24664333
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells.
    Emura M; Aufderheide M
    Exp Toxicol Pathol; 2016 May; 68(5):255-61. PubMed ID: 26951634
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organ-cocultures (COCs) for long term in vitro studies of lung cancer using 2-photon microscopy.
    Edelmann M; Tufman A; Huber RM; Bergner A
    Technol Cancer Res Treat; 2011 Jun; 10(3):275-9. PubMed ID: 21517134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation and characterization of metabolically competent pulmonary epithelial cells from pig lung tissue.
    Blickwede M; Borlak J
    Xenobiotica; 2005; 35(10-11):927-41. PubMed ID: 16393853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [A morphologic and histochemical study of human diploid cells].
    Zalkind SIa; Borisoglebskaia NV; Rapoport RI
    Biull Eksp Biol Med; 1967 Mar; 63(3):100-3. PubMed ID: 5622327
    [No Abstract]   [Full Text] [Related]  

  • 53. A paper-based in vitro model for on-chip investigation of the human respiratory system.
    Rahimi R; Htwe SS; Ochoa M; Donaldson A; Zieger M; Sood R; Tamayol A; Khademhosseini A; Ghaemmaghami AM; Ziaie B
    Lab Chip; 2016 Nov; 16(22):4319-4325. PubMed ID: 27731881
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Cell culture in ophthalmology: culture of specific cell types].
    Hu DN
    Zhonghua Yan Ke Za Zhi; 2003 May; 39(5):312-6. PubMed ID: 12956159
    [No Abstract]   [Full Text] [Related]  

  • 55. The physiological ultrastructure of cell membranes.
    BURGEN AS
    Can J Biochem Physiol; 1957 Jul; 35(7):569-76; discussion 576-8. PubMed ID: 13460775
    [No Abstract]   [Full Text] [Related]  

  • 56. Comparison of Various Cell Lines and Three-Dimensional Mucociliary Tissue Model Systems to Estimate Drug Permeability Using an In Vitro Transport Study to Predict Nasal Drug Absorption in Rats.
    Furubayashi T; Inoue D; Nishiyama N; Tanaka A; Yutani R; Kimura S; Katsumi H; Yamamoto A; Sakane T
    Pharmaceutics; 2020 Jan; 12(1):. PubMed ID: 31963555
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ABCC4 Variants Modify Susceptibility to Kawasaki Disease in a Southern Chinese Population.
    Che D; Pi L; Fang Z; Xu Y; Cai M; Fu L; Zhou H; Zhang L; Gu X
    Dis Markers; 2018; 2018():8638096. PubMed ID: 30363999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of increased accumulation of doxorubicin due to emodin on efflux transporter and LRP1 expression in lung adenocarcinoma and colorectal carcinoma cells.
    Iyer VV; Priya PY; Kangeyavelu J
    Mol Cell Biochem; 2018 Dec; 449(1-2):91-104. PubMed ID: 29644529
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combination of gambogic acid with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression.
    Zhang W; Zhou H; Yu Y; Li J; Li H; Jiang D; Chen Z; Yang D; Xu Z; Yu Z
    Onco Targets Ther; 2016; 9():3359-68. PubMed ID: 27330316
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of 3β-acethyl tormentic acid (3ATA) on ABCC proteins activity.
    Da Graça Rocha G; Simões M; Oliveira RR; Kaplan MAC; Gattass CR
    Int J Mol Sci; 2012; 13(6):6757-6771. PubMed ID: 22837662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.