These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 15664429)

  • 1. Carbofuran-induced oxidative stress in slow and fast skeletal muscles: prevention by memantine and atropine.
    Milatovic D; Gupta RC; Dekundy A; Montine TJ; Dettbarn WD
    Toxicology; 2005 Mar; 208(1):13-24. PubMed ID: 15664429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal oxidative injury and dendritic damage induced by carbofuran: protection by memantine.
    Gupta RC; Milatovic S; Dettbarn WD; Aschner M; Milatovic D
    Toxicol Appl Pharmacol; 2007 Mar; 219(2-3):97-105. PubMed ID: 17188316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of nitric oxide in myotoxicity produced by diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity.
    Gupta RC; Milatovic D; Dettbarn WD
    Arch Toxicol; 2002 Dec; 76(12):715-26. PubMed ID: 12451448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholinergic and noncholinergic changes in skeletal muscles by carbofuran and methyl parathion.
    Gupta RC; Goad JT; Kadel WL
    J Toxicol Environ Health; 1994 Nov; 43(3):291-304. PubMed ID: 7966439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevention and antagonism of acute carbofuran intoxication by memantine and atropine.
    Gupta RC; Kadel WL
    J Toxicol Environ Health; 1989; 28(1):111-22. PubMed ID: 2778846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of high-energy phosphates and their metabolites in protection of carbofuran-induced biochemical changes in diaphragm muscle by memantine.
    Gupta RC; Goad JT
    Arch Toxicol; 2000 Mar; 74(1):13-20. PubMed ID: 10817662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.
    Trinh HH; Lamb GD
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure.
    Bigard AX; Boehm E; Veksler V; Mateo P; Anflous K; Ventura-Clapier R
    J Mol Cell Cardiol; 1998 Nov; 30(11):2391-401. PubMed ID: 9925374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles.
    Bozzo C; Spolaore B; Toniolo L; Stevens L; Bastide B; Cieniewski-Bernard C; Fontana A; Mounier Y; Reggiani C
    FEBS J; 2005 Nov; 272(22):5771-85. PubMed ID: 16279942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and nitric oxide synthase in skeletal muscles of rats with post-infarction, compensated chronic heart failure.
    Rush JW; Green HJ; Maclean DA; Code LM
    Acta Physiol Scand; 2005 Nov; 185(3):211-8. PubMed ID: 16218926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle arteriolar and venular reactivity in two models of hypertensive rats.
    Losada M; Torres SH; Hernández N; Lippo M; Sosa A
    Microvasc Res; 2005 May; 69(3):142-8. PubMed ID: 15896356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of memantine, D-tubocurarine, and atropine in preventing acute toxic myopathy induced by organophosphate nerve agents: soman, sarin, tabun and VX.
    Gupta RC; Dettbarn WD
    Neurotoxicology; 1992; 13(3):649-61. PubMed ID: 1475066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxic and neurogenic factors in chloroquine myopathy fibre selectivity.
    Velasco E; Finol HJ; Marquez A
    J Submicrosc Cytol Pathol; 1995 Oct; 27(4):451-7. PubMed ID: 7585445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective long-term electrical stimulation of fast glycolytic fibres increases capillary supply but not oxidative enzyme activity in rat skeletal muscles.
    Egginton S; Hudlická O
    Exp Physiol; 2000 Sep; 85(5):567-73. PubMed ID: 11038408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythropoietin induces a shift of muscle phenotype from fast glycolytic to slow oxidative.
    Cayla JL; Maire P; Duvallet A; Wahrmann JP
    Int J Sports Med; 2008 Jun; 29(6):460-5. PubMed ID: 18080952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related changes of aqueous protein profiles in rat fast and slow twitch skeletal muscles.
    Cai D; Li M; Lee K; Lee K; Wong W; Chan K
    Electrophoresis; 2000 Jan; 21(2):465-72. PubMed ID: 10675029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. F2-isoprostanes are not just markers of oxidative stress.
    Comporti M; Signorini C; Arezzini B; Vecchio D; Monaco B; Gardi C
    Free Radic Biol Med; 2008 Feb; 44(3):247-56. PubMed ID: 17997380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thyroid hormone receptor-beta-selective agonist GC-24 spares skeletal muscle type I to II fiber shift.
    Miyabara EH; Aoki MS; Soares AG; Saltao RM; Vilicev CM; Passarelli M; Scanlan TS; Gouveia CH; Moriscot AS
    Cell Tissue Res; 2005 Aug; 321(2):233-41. PubMed ID: 15947969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of exercise and pharmacokinetics in cerivastatin-induced skeletal muscle toxicity.
    Seachrist JL; Loi CM; Evans MG; Criswell KA; Rothwell CE
    Toxicol Sci; 2005 Dec; 88(2):551-61. PubMed ID: 16141437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of slow- and fast-twitch skeletal muscles.
    Okumura N; Hashida-Okumura A; Kita K; Matsubae M; Matsubara T; Takao T; Nagai K
    Proteomics; 2005 Jul; 5(11):2896-906. PubMed ID: 15981298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.