These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 15664497)
1. Temperature-induced isomerization of violaxanthin in organic solvents and in light-harvesting complex II. Niedzwiedzki D; Krupa Z; Gruszecki WI J Photochem Photobiol B; 2005 Feb; 78(2):109-14. PubMed ID: 15664497 [TBL] [Abstract][Full Text] [Related]
2. Effect of 13-cis violaxanthin on organization of light harvesting complex II in monomolecular layers. Grudziński W; Matuła M; Sielewiesiuk J; Kernen P; Krupa Z; Gruszecki WI Biochim Biophys Acta; 2001 Jan; 1503(3):291-302. PubMed ID: 11115641 [TBL] [Abstract][Full Text] [Related]
3. Structural and functional modifications of the major light-harvesting complex II in cadmium- or copper-treated Secale cereale. Janik E; Maksymiec W; Mazur R; Garstka M; Gruszecki WI Plant Cell Physiol; 2010 Aug; 51(8):1330-40. PubMed ID: 20627948 [TBL] [Abstract][Full Text] [Related]
4. Heat-induced and light-induced isomerization of the xanthophyll pigment zeaxanthin. Milanowska J; Gruszecki WI J Photochem Photobiol B; 2005 Sep; 80(3):178-86. PubMed ID: 15967674 [TBL] [Abstract][Full Text] [Related]
5. The xanthophyll cycle pigments in Secale cereale leaves under combined Cd and high light stress conditions. Janik E; Grudziński W; Gruszecki WI; Krupa Z J Photochem Photobiol B; 2008 Jan; 90(1):47-52. PubMed ID: 18077178 [TBL] [Abstract][Full Text] [Related]
6. Light-induced change of configuration of the LHCII-bound xanthophyll (tentatively assigned to violaxanthin): a resonance Raman study. Gruszecki WI; Gospodarek M; Grudziński W; Mazur R; Gieczewska K; Garstka M J Phys Chem B; 2009 Feb; 113(8):2506-12. PubMed ID: 19191715 [TBL] [Abstract][Full Text] [Related]
7. Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. Ruban AV; Lee PJ; Wentworth M; Young AJ; Horton P J Biol Chem; 1999 Apr; 274(15):10458-65. PubMed ID: 10187836 [TBL] [Abstract][Full Text] [Related]
8. Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of photosystem II of plants. Ruban AV; Phillip D; Young AJ; Horton P Biochemistry; 1997 Jun; 36(25):7855-9. PubMed ID: 9201929 [TBL] [Abstract][Full Text] [Related]
9. The photoprotective mechanisms in Secale cereale leaves under Cu and high light stress condition. Janik E; Maksymiec W; Gruszecki WI J Photochem Photobiol B; 2010 Oct; 101(1):47-52. PubMed ID: 20655756 [TBL] [Abstract][Full Text] [Related]
10. Carotenoid specificity of light-harvesting complex II binding sites. Occurrence of 9-cis-violaxanthin in the neoxanthin-binding site in the parasitic angiosperm Cuscuta reflexa. Snyder AM; Clark BM; Robert B; Ruban AV; Bungard RA J Biol Chem; 2004 Feb; 279(7):5162-8. PubMed ID: 14610095 [TBL] [Abstract][Full Text] [Related]
11. Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching. Peterman EJ; Gradinaru CC; Calkoen F; Borst JC; van Grondelle R; van Amerongen H Biochemistry; 1997 Oct; 36(40):12208-15. PubMed ID: 9315858 [TBL] [Abstract][Full Text] [Related]
12. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII. Janik E; Bednarska J; Zubik M; Sowinski K; Luchowski R; Grudzinski W; Matosiuk D; Gruszecki WI Arch Biochem Biophys; 2016 Feb; 592():1-9. PubMed ID: 26773208 [TBL] [Abstract][Full Text] [Related]
13. Molecular configuration of xanthophyll cycle carotenoids in photosystem II antenna complexes. Ruban AV; Pascal A; Lee PJ; Robert B; Horton P J Biol Chem; 2002 Nov; 277(45):42937-42. PubMed ID: 12207030 [TBL] [Abstract][Full Text] [Related]
14. Resonance Raman spectroscopy of carotenoids in Photosystem I particles. Andreeva A; Velitchkova M Biophys Chem; 2005 Apr; 114(2-3):129-35. PubMed ID: 15829346 [TBL] [Abstract][Full Text] [Related]
15. Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I. Croce R; Mozzo M; Morosinotto T; Romeo A; Hienerwadel R; Bassi R Biochemistry; 2007 Mar; 46(12):3846-55. PubMed ID: 17326666 [TBL] [Abstract][Full Text] [Related]
16. Configuration and dynamics of xanthophylls in light-harvesting antennae of higher plants. Spectroscopic analysis of isolated light-harvesting complex of photosystem II and thylakoid membranes. Ruban AV; Pascal AA; Robert B; Horton P J Biol Chem; 2001 Jul; 276(27):24862-70. PubMed ID: 11331293 [TBL] [Abstract][Full Text] [Related]
17. Changes in the energy transfer pathways within photosystem II antenna induced by xanthophyll cycle activity. Ilioaia C; Duffy CD; Johnson MP; Ruban AV J Phys Chem B; 2013 May; 117(19):5841-7. PubMed ID: 23597158 [TBL] [Abstract][Full Text] [Related]
18. Carotenoid S(1) state in a recombinant light-harvesting complex of Photosystem II. Polívka T; Zigmantas D; Sundström V; Formaggio E; Cinque G; Bassi R Biochemistry; 2002 Jan; 41(2):439-50. PubMed ID: 11781082 [TBL] [Abstract][Full Text] [Related]
19. Light-modulated exposure of the light-harvesting complex II (LHCII) to protein kinase(s) and state transition in Chlamydomonas reinhardtii xanthophyll mutants. Vink M; Zer H; Alumot N; Gaathon A; Niyogi K; Herrmann RG; Andersson B; Ohad I Biochemistry; 2004 Jun; 43(24):7824-33. PubMed ID: 15196025 [TBL] [Abstract][Full Text] [Related]
20. A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II. Caffarri S; Passarini F; Bassi R; Croce R FEBS Lett; 2007 Oct; 581(24):4704-10. PubMed ID: 17850797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]