These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 15664515)

  • 21. A novel yeast genomic DNA library on a geneticin-resistance vector.
    Jauert PA; Jensen LE; Kirkpatrick DT
    Yeast; 2005 Jun; 22(8):653-7. PubMed ID: 16034826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of FAP7, MIG3, TMA19, or YLR392c confers resistance to arsenite on Saccharomyces cerevisiae.
    Takahashi T; Yano T; Zhu J; Hwang GW; Naganuma A
    J Toxicol Sci; 2010 Dec; 35(6):945-6. PubMed ID: 21139346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic Screens for Determination of Mechanism of Action.
    Gay-Andrieu F; Alex D; Calderone R
    Methods Mol Biol; 2016; 1356():165-72. PubMed ID: 26519072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overexpression of HAM1 gene detoxifies 5-bromodeoxyuridine in the yeast Saccharomyces cerevisiae.
    Takayama S; Fujii M; Kurosawa A; Adachi N; Ayusawa D
    Curr Genet; 2007 Nov; 52(5-6):203-11. PubMed ID: 17899088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of Saccharomyces cerevisiae Tub1 alpha-tubulin as a potential target for NKH-7, a cytotoxic 1-naphthol derivative compound.
    Chanklan R; Mizunuma M; Kongkathip N; Hasitapan K; Kongkathip B; Miyakawa T
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):1023-31. PubMed ID: 18391444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-Wide Screen Reveals
    Wong LH; Flibotte S; Sinha S; Chiang J; Giaever G; Nislow C
    G3 (Bethesda); 2017 Apr; 7(4):1251-1257. PubMed ID: 28235825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of essential yeast genes involved in polyamine resistance.
    Aouida M; Ramotar D
    Gene; 2018 Nov; 677():361-369. PubMed ID: 30153484
    [No Abstract]   [Full Text] [Related]  

  • 28. Chemical genetic and chemogenomic analysis in yeast.
    Coorey NV; Sampson LD; Barber JM; Bellows DS
    Methods Mol Biol; 2014; 1205():169-86. PubMed ID: 25213245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity.
    Zhou X; Arita A; Ellen TP; Liu X; Bai J; Rooney JP; Kurtz AD; Klein CB; Dai W; Begley TJ; Costa M
    Genomics; 2009 Nov; 94(5):294-307. PubMed ID: 19631266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of Ycg1 or Ydr520c confers resistance to cadmium in Saccharomyces cerevisiae.
    Hwang GW; Sasaki K; Takahashi T; Yamamoto R; Naganuma A
    J Toxicol Sci; 2009 Oct; 34(4):441-3. PubMed ID: 19652468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae.
    Zhou Q; Liu ZL; Ning K; Wang A; Zeng X; Xu J
    Sci Rep; 2014 Oct; 4():6556. PubMed ID: 25296911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive screening of human genes with inhibitory effects on yeast growth and validation of a yeast cell-based system for screening chemicals.
    Sekigawa M; Kunoh T; Wada S; Mukai Y; Ohshima K; Ohta S; Goshima N; Sasaki R; Mizukami T
    J Biomol Screen; 2010 Apr; 15(4):368-78. PubMed ID: 20237203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The synthetic genetic interaction network reveals small molecules that target specific pathways in Sacchromyces cerevisiae.
    Tamble CM; St Onge RP; Giaever G; Nislow C; Williams AG; Stuart JM; Lokey RS
    Mol Biosyst; 2011 Jun; 7(6):2019-30. PubMed ID: 21487606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel yeast cell-based assay to screen for inhibitors of human cytomegalovirus protease in a high-throughput format.
    Cottier V; Barberis A; Lüthi U
    Antimicrob Agents Chemother; 2006 Feb; 50(2):565-71. PubMed ID: 16436711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast.
    Ericson E; Gebbia M; Heisler LE; Wildenhain J; Tyers M; Giaever G; Nislow C
    PLoS Genet; 2008 Aug; 4(8):e1000151. PubMed ID: 18688276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin.
    Zewail A; Xie MW; Xing Y; Lin L; Zhang PF; Zou W; Saxe JP; Huang J
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3345-50. PubMed ID: 12615994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug-target pathways.
    Han S; Kim D
    PLoS Comput Biol; 2008 Aug; 4(8):e1000162. PubMed ID: 18769708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Editor's Highlight: Off-Target Effects of Neuroleptics and Antidepressants on Saccharomyces cerevisiae.
    Caldara M; Graziano S; Gullì M; Cadonici S; Marmiroli N
    Toxicol Sci; 2017 Apr; 156(2):538-548. PubMed ID: 28087837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene dosage effects in yeast support broader roles for the LOG1, HAM1 and DUT1 genes in detoxification of nucleotide analogues.
    Carlsson M; Hu GZ; Ronne H
    PLoS One; 2018; 13(5):e0196840. PubMed ID: 29738539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A yeast-based in vivo bioassay to screen for class I phosphatidylinositol 3-kinase specific inhibitors.
    Fernández-Acero T; Rodríguez-Escudero I; Vicente F; Monteiro MC; Tormo JR; Cantizani J; Molina M; Cid VJ
    J Biomol Screen; 2012 Sep; 17(8):1018-29. PubMed ID: 22706348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.