These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 15664607)
1. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Vandecasteele B; Meers E; Vervaeke P; De Vos B; Quataert P; Tack FM Chemosphere; 2005 Feb; 58(8):995-1002. PubMed ID: 15664607 [TBL] [Abstract][Full Text] [Related]
2. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments. Vandecasteele B; Laing GD; Quataert P; Tack FM Sci Total Environ; 2005 Apr; 341(1-3):251-63. PubMed ID: 15833256 [TBL] [Abstract][Full Text] [Related]
3. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
4. Foliar concentrations of volunteer willows growing on polluted sediment-derived sites versus sites with baseline contamination levels. Vandecasteele B; Quataert P; De Vos B; Tack FM; Muys B J Environ Monit; 2004 Apr; 6(4):313-21. PubMed ID: 15054540 [TBL] [Abstract][Full Text] [Related]
5. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Meers E; Lamsal S; Vervaeke P; Hopgood M; Lust N; Tack FM Environ Pollut; 2005 Sep; 137(2):354-64. PubMed ID: 15963374 [TBL] [Abstract][Full Text] [Related]
6. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
7. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754 [TBL] [Abstract][Full Text] [Related]
8. Evidence for preferential depths of metal retention in roots of salt marsh plants. Caetano M; Vale C; Cesário R; Fonseca N Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637 [TBL] [Abstract][Full Text] [Related]
9. The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea. Vandecasteele B; Quataert P; Tack FM Environ Pollut; 2005 May; 135(2):303-12. PubMed ID: 15734590 [TBL] [Abstract][Full Text] [Related]
10. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case. Wang FY; Lin XG; Yin R Environ Pollut; 2007 May; 147(1):248-55. PubMed ID: 17011687 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation. Zalesny RS; Bauer EO Int J Phytoremediation; 2007; 9(4):281-306. PubMed ID: 18246707 [TBL] [Abstract][Full Text] [Related]
12. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Vandecasteele B; Quataert P; Genouw G; Lettens S; Tack FM Sci Total Environ; 2009 Oct; 407(20):5289-97. PubMed ID: 19619889 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Unterbrunner R; Puschenreiter M; Sommer P; Wieshammer G; Tlustos P; Zupan M; Wenzel WW Environ Pollut; 2007 Jul; 148(1):107-14. PubMed ID: 17224228 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Populus and Salix continuously irrigated with landfill leachate II. soils and early tree development. Zalesny RS; Bauer EO Int J Phytoremediation; 2007; 9(4):307-23. PubMed ID: 18246708 [TBL] [Abstract][Full Text] [Related]
15. Effects of metal-contaminated soil on the performance of young trees growing in model ecosystems under field conditions. Hermle S; Günthardt-Goerg MS; Schulin R Environ Pollut; 2006 Nov; 144(2):703-14. PubMed ID: 16540218 [TBL] [Abstract][Full Text] [Related]
16. Physiological and proteomic responses of different willow clones (Salix fragilis x alba) exposed to dredged sediment contaminated by heavy metals. Evlard A; Sergeant K; Ferrandis S; Printz B; Renaut J; Guignard C; Paul R; Hausman JF; Campanella B Int J Phytoremediation; 2014; 16(7-12):1148-69. PubMed ID: 24933908 [TBL] [Abstract][Full Text] [Related]
17. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
18. Phytoextraction with Salix viminalis in a moderately to strongly contaminated area. Tőzsér D; Harangi S; Baranyai E; Lakatos G; Fülöp Z; Tóthmérész B; Simon E Environ Sci Pollut Res Int; 2018 Feb; 25(4):3275-3290. PubMed ID: 29147988 [TBL] [Abstract][Full Text] [Related]
19. Phytoextraction capacity of the Chenopodium album L. grown on soil amended with tannery sludge. Gupta AK; Sinha S Bioresour Technol; 2007 Jan; 98(2):442-6. PubMed ID: 16540314 [TBL] [Abstract][Full Text] [Related]
20. Warming and drought change trace element bioaccumulation patterns in a Mediterranean shrubland. Sardans J; Peñuelas J; Estiarte M Chemosphere; 2008 Jan; 70(5):874-85. PubMed ID: 17709128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]