BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 15664728)

  • 1. Replicative senescence in sheep fibroblasts is a p53 dependent process.
    Davis T; Skinner JW; Faragher RG; Jones CJ; Kipling D
    Exp Gerontol; 2005; 40(1-2):17-26. PubMed ID: 15664728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replicative senescence of normal human oral keratinocytes is associated with the loss of telomerase activity without shortening of telomeres.
    Kang MK; Guo W; Park NH
    Cell Growth Differ; 1998 Jan; 9(1):85-95. PubMed ID: 9438392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Telomeres and telomerase biology in vertebrates: progress towards a non-human model for replicative senescence and ageing.
    Davis T; Kipling D
    Biogerontology; 2005 Dec; 6(6):371-85. PubMed ID: 16518699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development.
    Evans RJ; Wyllie FS; Wynford-Thomas D; Kipling D; Jones CJ
    Cancer Res; 2003 Aug; 63(16):4854-61. PubMed ID: 12941806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Telomerase-immortalized sheep fibroblasts can be reprogrammed by nuclear transfer to undergo early development.
    Cui W; Wylie D; Aslam S; Dinnyes A; King T; Wilmut I; Clark AJ
    Biol Reprod; 2003 Jul; 69(1):15-21. PubMed ID: 12606403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction in mortalin level by its antisense expression causes senescence-like growth arrest in human immortalized cells.
    Wadhwa R; Takano S; Taira K; Kaul SC
    J Gene Med; 2004 Apr; 6(4):439-44. PubMed ID: 15079818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase.
    Morales CP; Holt SE; Ouellette M; Kaur KJ; Yan Y; Wilson KS; White MA; Wright WE; Shay JW
    Nat Genet; 1999 Jan; 21(1):115-8. PubMed ID: 9916803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts.
    Jackson JG; Pereira-Smith OM
    Cancer Res; 2006 Sep; 66(17):8356-60. PubMed ID: 16951143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular senescence induced by p53-ras cooperation is independent of p21waf1 in murine embryo fibroblasts.
    Castro ME; del Valle Guijarro M; Moneo V; Carnero A
    J Cell Biochem; 2004 Jun; 92(3):514-24. PubMed ID: 15156563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knocking down p53 with siRNA does not affect the overexpression of p21WAF-1 after exposure of IMR-90 hTERT fibroblasts to a sublethal concentration of H2O2 leading to premature senescence.
    Zdanov S; Debacq-Chainiaux F; Toussaint O
    Ann N Y Acad Sci; 2007 Apr; 1100():316-22. PubMed ID: 17460194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical telomere shortening regulated by the ataxia-telangiectasia gene acts as a DNA damage signal leading to activation of p53 protein and limited life-span of human diploid fibroblasts. A review.
    Vaziri H
    Biochemistry (Mosc); 1997 Nov; 62(11):1306-10. PubMed ID: 9467855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA.
    Sozou PD; Kirkwood TB
    J Theor Biol; 2001 Dec; 213(4):573-86. PubMed ID: 11742526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of replicative senescence in normal rodent glia.
    Mathon NF; Malcolm DS; Harrisingh MC; Cheng L; Lloyd AC
    Science; 2001 Feb; 291(5505):872-5. PubMed ID: 11157166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immortalization in a normal foreskin fibroblast culture following transduction of cyclin A2 or cdk1 genes in retroviral vectors.
    Luo P; Tresini M; Cristofalo V; Chen X; Saulewicz A; Gray MD; Banker DE; Klingelhutz AL; Ohtsubo M; Takihara Y; Norwood TH
    Exp Cell Res; 2004 Apr; 294(2):406-19. PubMed ID: 15023530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Telomeric 3'-overhang length is associated with the size of telomeres.
    Rahman R; Forsyth NR; Cui W
    Exp Gerontol; 2008 Apr; 43(4):258-65. PubMed ID: 18280685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling the senescent phenotype from telomere shortening in hydrogen peroxide-treated fibroblasts.
    Chen QM; Prowse KR; Tu VC; Purdom S; Linskens MH
    Exp Cell Res; 2001 May; 265(2):294-303. PubMed ID: 11302695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low oxygen delays fibroblast senescence despite shorter telomeres.
    Betts DH; Perrault SD; King WA
    Biogerontology; 2008 Feb; 9(1):19-31. PubMed ID: 17952625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The disparity between human cell senescence in vitro and lifelong replication in vivo.
    Rubin H
    Nat Biotechnol; 2002 Jul; 20(7):675-81. PubMed ID: 12089551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Telomere-based proliferative lifespan barriers in Werner-syndrome fibroblasts involve both p53-dependent and p53-independent mechanisms.
    Davis T; Singhrao SK; Wyllie FS; Haughton MF; Smith PJ; Wiltshire M; Wynford-Thomas D; Jones CJ; Faragher RG; Kipling D
    J Cell Sci; 2003 Apr; 116(Pt 7):1349-57. PubMed ID: 12615976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of the p21 sdi1 gene induces senescence-like state in human cancer cells: implication for senescence-directed molecular therapy for cancer.
    Kagawa S; Fujiwara T; Kadowaki Y; Fukazawa T; Sok-Joo R; Roth JA; Tanaka N
    Cell Death Differ; 1999 Aug; 6(8):765-72. PubMed ID: 10467350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.