These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 15664728)
1. Replicative senescence in sheep fibroblasts is a p53 dependent process. Davis T; Skinner JW; Faragher RG; Jones CJ; Kipling D Exp Gerontol; 2005; 40(1-2):17-26. PubMed ID: 15664728 [TBL] [Abstract][Full Text] [Related]
2. Replicative senescence of normal human oral keratinocytes is associated with the loss of telomerase activity without shortening of telomeres. Kang MK; Guo W; Park NH Cell Growth Differ; 1998 Jan; 9(1):85-95. PubMed ID: 9438392 [TBL] [Abstract][Full Text] [Related]
3. Telomeres and telomerase biology in vertebrates: progress towards a non-human model for replicative senescence and ageing. Davis T; Kipling D Biogerontology; 2005 Dec; 6(6):371-85. PubMed ID: 16518699 [TBL] [Abstract][Full Text] [Related]
4. A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development. Evans RJ; Wyllie FS; Wynford-Thomas D; Kipling D; Jones CJ Cancer Res; 2003 Aug; 63(16):4854-61. PubMed ID: 12941806 [TBL] [Abstract][Full Text] [Related]
5. Telomerase-immortalized sheep fibroblasts can be reprogrammed by nuclear transfer to undergo early development. Cui W; Wylie D; Aslam S; Dinnyes A; King T; Wilmut I; Clark AJ Biol Reprod; 2003 Jul; 69(1):15-21. PubMed ID: 12606403 [TBL] [Abstract][Full Text] [Related]
6. Reduction in mortalin level by its antisense expression causes senescence-like growth arrest in human immortalized cells. Wadhwa R; Takano S; Taira K; Kaul SC J Gene Med; 2004 Apr; 6(4):439-44. PubMed ID: 15079818 [TBL] [Abstract][Full Text] [Related]
7. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Morales CP; Holt SE; Ouellette M; Kaur KJ; Yan Y; Wilson KS; White MA; Wright WE; Shay JW Nat Genet; 1999 Jan; 21(1):115-8. PubMed ID: 9916803 [TBL] [Abstract][Full Text] [Related]
8. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Jackson JG; Pereira-Smith OM Cancer Res; 2006 Sep; 66(17):8356-60. PubMed ID: 16951143 [TBL] [Abstract][Full Text] [Related]
9. Cellular senescence induced by p53-ras cooperation is independent of p21waf1 in murine embryo fibroblasts. Castro ME; del Valle Guijarro M; Moneo V; Carnero A J Cell Biochem; 2004 Jun; 92(3):514-24. PubMed ID: 15156563 [TBL] [Abstract][Full Text] [Related]
10. Knocking down p53 with siRNA does not affect the overexpression of p21WAF-1 after exposure of IMR-90 hTERT fibroblasts to a sublethal concentration of H2O2 leading to premature senescence. Zdanov S; Debacq-Chainiaux F; Toussaint O Ann N Y Acad Sci; 2007 Apr; 1100():316-22. PubMed ID: 17460194 [TBL] [Abstract][Full Text] [Related]
11. Critical telomere shortening regulated by the ataxia-telangiectasia gene acts as a DNA damage signal leading to activation of p53 protein and limited life-span of human diploid fibroblasts. A review. Vaziri H Biochemistry (Mosc); 1997 Nov; 62(11):1306-10. PubMed ID: 9467855 [TBL] [Abstract][Full Text] [Related]
12. A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA. Sozou PD; Kirkwood TB J Theor Biol; 2001 Dec; 213(4):573-86. PubMed ID: 11742526 [TBL] [Abstract][Full Text] [Related]
13. Lack of replicative senescence in normal rodent glia. Mathon NF; Malcolm DS; Harrisingh MC; Cheng L; Lloyd AC Science; 2001 Feb; 291(5505):872-5. PubMed ID: 11157166 [TBL] [Abstract][Full Text] [Related]
14. Immortalization in a normal foreskin fibroblast culture following transduction of cyclin A2 or cdk1 genes in retroviral vectors. Luo P; Tresini M; Cristofalo V; Chen X; Saulewicz A; Gray MD; Banker DE; Klingelhutz AL; Ohtsubo M; Takihara Y; Norwood TH Exp Cell Res; 2004 Apr; 294(2):406-19. PubMed ID: 15023530 [TBL] [Abstract][Full Text] [Related]
15. Telomeric 3'-overhang length is associated with the size of telomeres. Rahman R; Forsyth NR; Cui W Exp Gerontol; 2008 Apr; 43(4):258-65. PubMed ID: 18280685 [TBL] [Abstract][Full Text] [Related]
16. Uncoupling the senescent phenotype from telomere shortening in hydrogen peroxide-treated fibroblasts. Chen QM; Prowse KR; Tu VC; Purdom S; Linskens MH Exp Cell Res; 2001 May; 265(2):294-303. PubMed ID: 11302695 [TBL] [Abstract][Full Text] [Related]
18. The disparity between human cell senescence in vitro and lifelong replication in vivo. Rubin H Nat Biotechnol; 2002 Jul; 20(7):675-81. PubMed ID: 12089551 [TBL] [Abstract][Full Text] [Related]
19. Telomere-based proliferative lifespan barriers in Werner-syndrome fibroblasts involve both p53-dependent and p53-independent mechanisms. Davis T; Singhrao SK; Wyllie FS; Haughton MF; Smith PJ; Wiltshire M; Wynford-Thomas D; Jones CJ; Faragher RG; Kipling D J Cell Sci; 2003 Apr; 116(Pt 7):1349-57. PubMed ID: 12615976 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of the p21 sdi1 gene induces senescence-like state in human cancer cells: implication for senescence-directed molecular therapy for cancer. Kagawa S; Fujiwara T; Kadowaki Y; Fukazawa T; Sok-Joo R; Roth JA; Tanaka N Cell Death Differ; 1999 Aug; 6(8):765-72. PubMed ID: 10467350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]