These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 15664891)

  • 41. Determination of fluid--solid transitions in model protein solutions using the histogram reweighting method and expanded ensemble simulations.
    Chang J; Lenhoff AM; Sandler SI
    J Chem Phys; 2004 Feb; 120(6):3003-14. PubMed ID: 15268448
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Folding of the 25 residue Abeta(12-36) peptide in TFE/water: temperature-dependent transition from a funneled free-energy landscape to a rugged one.
    Kamiya N; Mitomo D; Shea JE; Higo J
    J Phys Chem B; 2007 May; 111(19):5351-6. PubMed ID: 17439167
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring the temperature-pressure configurational landscape of biomolecules: from lipid membranes to proteins.
    Winter R; Dzwolak W
    Philos Trans A Math Phys Eng Sci; 2005 Feb; 363(1827):537-62; discussion 562-3. PubMed ID: 15664898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The highly cooperative folding of small naturally occurring proteins is likely the result of natural selection.
    Watters AL; Deka P; Corrent C; Callender D; Varani G; Sosnick T; Baker D
    Cell; 2007 Feb; 128(3):613-24. PubMed ID: 17289578
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identifying the protein folding nucleus using molecular dynamics.
    Dokholyan NV; Buldyrev SV; Stanley HE; Shakhnovich EI
    J Mol Biol; 2000 Mar; 296(5):1183-8. PubMed ID: 10698625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Topography of the free-energy landscape probed via mechanical unfolding of proteins.
    Kirmizialtin S; Huang L; Makarov DE
    J Chem Phys; 2005 Jun; 122(23):234915. PubMed ID: 16008495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy landscape of a simple model for strong liquids.
    Moreno AJ; Buldyrev SV; La Nave E; Saika-Voivod I; Sciortino F; Tartaglia P; Zaccarelli E
    Phys Rev Lett; 2005 Oct; 95(15):157802. PubMed ID: 16241763
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.
    Naumis GG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061505. PubMed ID: 23005102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Life in Phases: Intra- and Inter- Molecular Phase Transitions in Protein Solutions.
    Uversky VN; Finkelstein AV
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31817975
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hidden structure in protein energy landscapes.
    Ming D; Anghel M; Wall ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021902. PubMed ID: 18352046
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of liquid structure on the thermodynamics of freezing.
    Ronceray P; Harrowell P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052313. PubMed ID: 23767546
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Markov-chain model description of binding funnels to enhance the ranking of docked solutions.
    Torchala M; Moal IH; Chaleil RA; Agius R; Bates PA
    Proteins; 2013 Dec; 81(12):2143-9. PubMed ID: 23900714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glassy behavior of a percolative water-protein system.
    Pagnotta SE; Gargana R; Bruni F; Bocedi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031506. PubMed ID: 15903434
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coarse-grained strategy for modeling protein stability in concentrated solutions. II: phase behavior.
    Shen VK; Cheung JK; Errington JR; Truskett TM
    Biophys J; 2006 Mar; 90(6):1949-60. PubMed ID: 16387768
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures.
    Ferreiro DU; Walczak AM; Komives EA; Wolynes PG
    PLoS Comput Biol; 2008 May; 4(5):e1000070. PubMed ID: 18483553
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isoviscosity lines and the liquid-glass transition in simple liquids.
    Fomin YD; Brazhkin VV; Ryzhov VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011503. PubMed ID: 23005421
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evolution, energy landscapes and the paradoxes of protein folding.
    Wolynes PG
    Biochimie; 2015 Dec; 119():218-30. PubMed ID: 25530262
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiple reentrant glass transitions of soft spheres at high densities: monotonicity of the curves of constant relaxation time in jamming phase diagrams depending on temperature over pressure and pressure.
    Schmiedeberg M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052310. PubMed ID: 23767543
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 'Graphenization' of 2D simple monatomic liquids.
    Hoang VV
    J Phys Condens Matter; 2014 May; 26(20):205101. PubMed ID: 24769527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stochastic dynamics of model proteins on a directed graph.
    Bongini L; Casetti L; Livi R; Politi A; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061925. PubMed ID: 19658542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.