These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15665105)

  • 1. Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott.
    Botting JP; Butterfield NJ
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1554-9. PubMed ID: 15665105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonaceous preservation of Cambrian hexactinellid sponge spicules.
    Harvey TH
    Biol Lett; 2010 Dec; 6(6):834-7. PubMed ID: 20554559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution.
    Botting JP; Zhang Y; Muir LA
    Sci Rep; 2017 Jul; 7(1):5286. PubMed ID: 28706211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giving the early fossil record of sponges a squeeze.
    Antcliffe JB; Callow RH; Brasier MD
    Biol Rev Camb Philos Soc; 2014 Nov; 89(4):972-1004. PubMed ID: 24779547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Middle and Late Cambrian sponge spicules from Hunan, China.
    Xiping D; Knoll AH
    J Paleontol; 1996 Mar; 70(2):173-84. PubMed ID: 11539394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules.
    Sperling EA; Robinson JM; Pisani D; Peterson KJ
    Geobiology; 2010 Jan; 8(1):24-36. PubMed ID: 19929965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A late-Ediacaran crown-group sponge animal.
    Wang X; Liu AG; Chen Z; Wu C; Liu Y; Wan B; Pang K; Zhou C; Yuan X; Xiao S
    Nature; 2024 Jun; 630(8018):905-911. PubMed ID: 38839967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensionally preserved soft tissues and calcareous hexactins in a Silurian sponge: implications for early sponge evolution.
    Nadhira A; Sutton MD; Botting JP; Muir LA; Gueriau P; King A; Briggs DEG; Siveter DJ; Siveter DJ
    R Soc Open Sci; 2019 Jul; 6(7):190911. PubMed ID: 31417767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unique invention of the siliceous sponges: their enzymatically made bio-silica skeleton.
    Müller WE; Wang X; Chen A; Hu S; Gan L; Schröder HC; Schloßmacher U; Wiens M
    Prog Mol Subcell Biol; 2011; 52():251-81. PubMed ID: 21877269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiculogenesis and biomineralization in early sponge animals.
    Tang Q; Wan B; Yuan X; Muscente AD; Xiao S
    Nat Commun; 2019 Jul; 10(1):3348. PubMed ID: 31350398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new sponge from the Marjum Formation of Utah documents the Cambrian origin of the hexactinellid body plan.
    Del Mouro L; Lerosey-Aubril R; Botting J; Coleman R; Gaines RR; Skabelund J; Weaver JC; Ortega-Hernández J
    R Soc Open Sci; 2024 Sep; 11(9):231845. PubMed ID: 39295920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions.
    Uriz MJ; Turon X; Becerro MA; Agell G
    Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep phylogeny and evolution of sponges (phylum Porifera).
    Wörheide G; Dohrmann M; Erpenbeck D; Larroux C; Maldonado M; Voigt O; Borchiellini C; Lavrov DV
    Adv Mar Biol; 2012; 61():1-78. PubMed ID: 22560777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.
    Riesgo A; Farrar N; Windsor PJ; Giribet G; Leys SP
    Mol Biol Evol; 2014 May; 31(5):1102-20. PubMed ID: 24497032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition and mimicry: the curious case of chaetae in brachiopods from the middle Cambrian Burgess Shale.
    Topper TP; Strotz LC; Holmer LE; Zhang Z; Tait NN; Caron JB
    BMC Evol Biol; 2015 Mar; 15():42. PubMed ID: 25886965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny and evolution of glass sponges (porifera, hexactinellida).
    Dohrmann M; Janussen D; Reitner J; Collins AG; Worheide G
    Syst Biol; 2008 Jun; 57(3):388-405. PubMed ID: 18570034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals.
    Sethmann I; Wörheide G
    Micron; 2008; 39(3):209-28. PubMed ID: 17360189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni.
    Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M
    J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Naked chancelloriids from the lower Cambrian of China show evidence for sponge-type growth.
    Cong PY; Harvey THP; Williams M; Siveter DJ; Siveter DJ; Gabbott SE; Li YJ; Wei F; Hou XG
    Proc Biol Sci; 2018 Jun; 285(1881):. PubMed ID: 29925613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni.
    Müller WE; Boreiko A; Schlossmacher U; Wang X; Eckert C; Kropf K; Li J; Schröder HC
    J Exp Biol; 2008 Feb; 211(Pt 3):300-9. PubMed ID: 18203984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.