BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 15665124)

  • 1. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
    Smith BA; Tolloczko B; Martin JG; Grütter P
    Biophys J; 2005 Apr; 88(4):2994-3007. PubMed ID: 15665124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microrheology of human lung epithelial cells measured by atomic force microscopy.
    Alcaraz J; Buscemi L; Grabulosa M; Trepat X; Fabry B; Farré R; Navajas D
    Biophys J; 2003 Mar; 84(3):2071-9. PubMed ID: 12609908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stiffness changes in cultured airway smooth muscle cells.
    An SS; Laudadio RE; Lai J; Rogers RA; Fredberg JJ
    Am J Physiol Cell Physiol; 2002 Sep; 283(3):C792-801. PubMed ID: 12176736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rat airway smooth muscle cell during actin modulation: rheology and glassy dynamics.
    Laudadio RE; Millet EJ; Fabry B; An SS; Butler JP; Fredberg JJ
    Am J Physiol Cell Physiol; 2005 Dec; 289(6):C1388-95. PubMed ID: 16120653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airway smooth muscle tone modulates mechanically induced cytoskeletal stiffening and remodeling.
    Deng L; Fairbank NJ; Cole DJ; Fredberg JJ; Maksym GN
    J Appl Physiol (1985); 2005 Aug; 99(2):634-41. PubMed ID: 15845778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz.
    Maksym GN; Fabry B; Butler JP; Navajas D; Tschumperlin DJ; Laporte JD; Fredberg JJ
    J Appl Physiol (1985); 2000 Oct; 89(4):1619-32. PubMed ID: 11007604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress.
    Stamenovic D; Suki B; Fabry B; Wang N; Fredberg JJ
    J Appl Physiol (1985); 2004 May; 96(5):1600-5. PubMed ID: 14707148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic and dynamic nonlinear properties of airway smooth muscle tissue: roles of mechanical force and the cytoskeleton.
    Ito S; Majumdar A; Kume H; Shimokata K; Naruse K; Lutchen KR; Stamenovic D; Suki B
    Am J Physiol Lung Cell Mol Physiol; 2006 Jun; 290(6):L1227-37. PubMed ID: 16414980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer.
    Ziemann F; Rädler J; Sackmann E
    Biophys J; 1994 Jun; 66(6):2210-6. PubMed ID: 8075354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology of passive and adhesion-activated neutrophils probed by atomic force microscopy.
    Roca-Cusachs P; Almendros I; Sunyer R; Gavara N; Farré R; Navajas D
    Biophys J; 2006 Nov; 91(9):3508-18. PubMed ID: 16891365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cytoskeletal components in stress-relaxation behavior of adherent vascular smooth muscle cells.
    Hemmer JD; Nagatomi J; Wood ST; Vertegel AA; Dean D; Laberge M
    J Biomech Eng; 2009 Apr; 131(4):041001. PubMed ID: 19275430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of the active and passive components of the cytoskeletal prestress to stiffening of airway smooth muscle cells.
    Rosenblatt N; Hu S; Suki B; Wang N; Stamenović D
    Ann Biomed Eng; 2007 Feb; 35(2):224-34. PubMed ID: 17151921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments.
    Brückner BR; Nöding H; Janshoff A
    Biophys J; 2017 Feb; 112(4):724-735. PubMed ID: 28256232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
    Gardel ML; Shin JH; MacKintosh FC; Mahadevan L; Matsudaira PA; Weitz DA
    Phys Rev Lett; 2004 Oct; 93(18):188102. PubMed ID: 15525211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy.
    Stolz M; Raiteri R; Daniels AU; VanLandingham MR; Baschong W; Aebi U
    Biophys J; 2004 May; 86(5):3269-83. PubMed ID: 15111440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusing wave spectroscopy microrheology of actin filament networks.
    Palmer A; Xu J; Kuo SC; Wirtz D
    Biophys J; 1999 Feb; 76(2):1063-71. PubMed ID: 9916038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphasic stress relaxation response of freshly isolated and cultured vascular smooth muscle cells measured by quasi-in situ tensile test.
    Nagayama K; Saito S; Matsumoto T
    Biomed Mater Eng; 2015; 25(3):299-312. PubMed ID: 26407116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of contractile unit reorganization in force generation in airway smooth muscle.
    Brook BS; Jensen OE
    Math Med Biol; 2014 Jun; 31(2):99-124. PubMed ID: 23360777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compaction of cell shape occurs before decrease of elasticity in CHO-K1 cells treated with actin cytoskeleton disrupting drug cytochalasin D.
    Schulze C; Müller K; Käs JA; Gerdelmann JC
    Cell Motil Cytoskeleton; 2009 Apr; 66(4):193-201. PubMed ID: 19235199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung.
    Gunst SJ; Tang DD; Opazo Saez A
    Respir Physiol Neurobiol; 2003 Sep; 137(2-3):151-68. PubMed ID: 14516723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.