These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15665414)

  • 21. Role of iron and iron chelation in dopaminergic-induced neurodegeneration: implication for Parkinson's disease.
    Ben-Shachar D; Eshel G; Riederer P; Youdim MB
    Ann Neurol; 1992; 32 Suppl():S105-10. PubMed ID: 1510367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate.
    Mandel S; Maor G; Youdim MB
    J Mol Neurosci; 2004; 24(3):401-16. PubMed ID: 15655262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of neuromelanin on oxidative pathways within the human substantia nigra.
    Double KL; Ben-Shachar D; Youdim MB; Zecca L; Riederer P; Gerlach M
    Neurotoxicol Teratol; 2002; 24(5):621-8. PubMed ID: 12200193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ironing out Parkinson's disease: is therapeutic treatment with iron chelators a real possibility?
    Kaur D; Andersen JK
    Aging Cell; 2002 Oct; 1(1):17-21. PubMed ID: 12882349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inflammation and age-related iron accumulation in F344 rats.
    Hunter RL; Liu M; Choi DY; Cass WA; Bing G
    Curr Aging Sci; 2008 Jul; 1(2):112-21. PubMed ID: 20021380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons.
    Liss B; Haeckel O; Wildmann J; Miki T; Seino S; Roeper J
    Nat Neurosci; 2005 Dec; 8(12):1742-51. PubMed ID: 16299504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dopaminergic Neurodegeneration in the Mouse Is Associated with Decrease of Viscoelasticity of Substantia Nigra Tissue.
    Hain EG; Klein C; Munder T; Braun J; Riek K; Mueller S; Sack I; Steiner B
    PLoS One; 2016; 11(8):e0161179. PubMed ID: 27526042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutathione, iron and Parkinson's disease.
    Bharath S; Hsu M; Kaur D; Rajagopalan S; Andersen JK
    Biochem Pharmacol; 2002 Sep; 64(5-6):1037-48. PubMed ID: 12213603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons.
    Zhang J; Perry G; Smith MA; Robertson D; Olson SJ; Graham DG; Montine TJ
    Am J Pathol; 1999 May; 154(5):1423-9. PubMed ID: 10329595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron and dopamine: a toxic couple.
    Hare DJ; Double KL
    Brain; 2016 Apr; 139(Pt 4):1026-35. PubMed ID: 26962053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron overload induced by IRP2 gene knockout aggravates symptoms of Parkinson's disease.
    Ci YZ; Li H; You LH; Jin Y; Zhou R; Gao G; Hoi MPM; Wang C; Chang YZ; Yu P
    Neurochem Int; 2020 Mar; 134():104657. PubMed ID: 31904393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ndfip1 attenuated 6-OHDA-induced iron accumulation via regulating the degradation of DMT1.
    Jia W; Xu H; Du X; Jiang H; Xie J
    Neurobiol Aging; 2015 Feb; 36(2):1183-93. PubMed ID: 25467637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration.
    Zhu W; Li X; Xie W; Luo F; Kaur D; Andersen JK; Jankovic J; Le W
    Neurobiol Dis; 2010 Feb; 37(2):307-13. PubMed ID: 19818853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective increase of iron in substantia nigra zona compacta of parkinsonian brains.
    Sofic E; Paulus W; Jellinger K; Riederer P; Youdim MB
    J Neurochem; 1991 Mar; 56(3):978-82. PubMed ID: 1704426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson's disease: a case for the selective vulnerability of the substantia nigra.
    Galvin JE
    Acta Neuropathol; 2006 Aug; 112(2):115-26. PubMed ID: 16791599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron as a vulnerability factor in nigrostriatal degeneration in aging and Parkinson's disease.
    Floor E
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):709-20. PubMed ID: 10875434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease.
    Kaur D; Yantiri F; Rajagopalan S; Kumar J; Mo JQ; Boonplueang R; Viswanath V; Jacobs R; Yang L; Beal MF; DiMonte D; Volitaskis I; Ellerby L; Cherny RA; Bush AI; Andersen JK
    Neuron; 2003 Mar; 37(6):899-909. PubMed ID: 12670420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease.
    Dexter DT; Wells FR; Lees AJ; Agid F; Agid Y; Jenner P; Marsden CD
    J Neurochem; 1989 Jun; 52(6):1830-6. PubMed ID: 2723638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutathione depletion in immortalized midbrain-derived dopaminergic neurons results in increases in the labile iron pool: implications for Parkinson's disease.
    Kaur D; Lee D; Ragapolan S; Andersen JK
    Free Radic Biol Med; 2009 Mar; 46(5):593-8. PubMed ID: 19118623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can mesenchymal stem cells reduce vulnerability of dopaminergic neurons in the substantia nigra to oxidative insult in individuals at risk to Parkinson's disease?
    Datta I; Bhonde R
    Cell Biol Int; 2012 Jul; 36(7):617-24. PubMed ID: 22417707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.