These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 15665480)
1. Electron transfer ability from NADH to menaquinone and from NADPH to oxygen of type II NADH dehydrogenase of Corynebacterium glutamicum. Nantapong N; Otofuji A; Migita CT; Adachi O; Toyama H; Matsushita K Biosci Biotechnol Biochem; 2005 Jan; 69(1):149-59. PubMed ID: 15665480 [TBL] [Abstract][Full Text] [Related]
2. NADH dehydrogenase of Corynebacterium glutamicum. Purification of an NADH dehydrogenase II homolog able to oxidize NADPH. Matsushita K; Otofuji A; Iwahashi M; Toyama H; Adachi O FEMS Microbiol Lett; 2001 Nov; 204(2):271-6. PubMed ID: 11731134 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Komati Reddy G; Lindner SN; Wendisch VF Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602 [TBL] [Abstract][Full Text] [Related]
4. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation. Tsuge Y; Uematsu K; Yamamoto S; Suda M; Yukawa H; Inui M Appl Microbiol Biotechnol; 2015 Jul; 99(13):5573-82. PubMed ID: 25808520 [TBL] [Abstract][Full Text] [Related]
5. Effect of NADH dehydrogenase-disruption and over-expression on respiration-related metabolism in Corynebacterium glutamicum KY9714. Nantapong N; Kugimiya Y; Toyama H; Adachi O; Matsushita K Appl Microbiol Biotechnol; 2004 Dec; 66(2):187-93. PubMed ID: 15558275 [TBL] [Abstract][Full Text] [Related]
6. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293. Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815 [No Abstract] [Full Text] [Related]
7. Modification of substrate specificity in single point mutants of Agrobacterium tumefaciens type II NADH dehydrogenase. Desplats C; Beyly A; Cuiné S; Bernard L; Cournac L; Peltier G FEBS Lett; 2007 Aug; 581(21):4017-22. PubMed ID: 17673203 [TBL] [Abstract][Full Text] [Related]
8. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F; Li K; Huan X; Wang X Appl Biochem Biotechnol; 2013 Sep; 171(2):504-21. PubMed ID: 23868449 [TBL] [Abstract][Full Text] [Related]
9. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes. Cui K; Ma Q; Lu AY; Yang CS Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic characterization of an active NDH complex from Thermosynechococcus elongatus. Hu P; Lv J; Fu P; Hualing M FEBS Lett; 2013 Aug; 587(15):2340-5. PubMed ID: 23722112 [TBL] [Abstract][Full Text] [Related]
11. Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. Rapisarda VA; Montelongo LR; Farías RN; Massa EM Arch Biochem Biophys; 1999 Oct; 370(2):143-50. PubMed ID: 10510271 [TBL] [Abstract][Full Text] [Related]
12. [Purification and characterization of glutamate dehydrogenase. from Corynebacterium glutamicum S9114]. Wang Y; Song X; Yang PP; Duan ZY; Mao ZG Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):725-9. PubMed ID: 15971587 [TBL] [Abstract][Full Text] [Related]
13. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Kukiełka E; Dicker E; Cederbaum AI Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551 [TBL] [Abstract][Full Text] [Related]
14. The respiratory chain of Corynebacterium glutamicum. Bott M; Niebisch A J Biotechnol; 2003 Sep; 104(1-3):129-53. PubMed ID: 12948635 [TBL] [Abstract][Full Text] [Related]
15. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136 [TBL] [Abstract][Full Text] [Related]
16. Direct evidence for the presence of two external NAD(P)H dehydrogenases coupled to the electron transport chain in plant mitochondria. Roberts TH; Fredlund KM; Møller IM FEBS Lett; 1995 Oct; 373(3):307-9. PubMed ID: 7589489 [TBL] [Abstract][Full Text] [Related]
17. NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump. Pfenninger-Li XD; Albracht SP; van Belzen R; Dimroth P Biochemistry; 1996 May; 35(20):6233-42. PubMed ID: 8639563 [TBL] [Abstract][Full Text] [Related]
18. Evidence that a type-2 NADH:quinone oxidoreductase mediates electron transfer to particulate methane monooxygenase in methylococcus capsulatus. Cook SA; Shiemke AK Arch Biochem Biophys; 2002 Feb; 398(1):32-40. PubMed ID: 11811946 [TBL] [Abstract][Full Text] [Related]
19. Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. II. Kinetics of reoxidation of the reduced enzyme. Albracht SP; Bakker PT Biochim Biophys Acta; 1986 Jul; 850(3):423-8. PubMed ID: 3015207 [TBL] [Abstract][Full Text] [Related]
20. Presence of an NAD(P)H dehydrogenase and A b-type cytochrome different from the respiratory chain in submitochondrial particles from human placenta. Espinosa-Garcia MT; Martinez F Biochem Mol Biol Int; 1996 Feb; 38(1):205-14. PubMed ID: 8932536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]