BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 15665853)

  • 41. Revisiting the role of the mother centriole in centriole biogenesis.
    Rodrigues-Martins A; Riparbelli M; Callaini G; Glover DM; Bettencourt-Dias M
    Science; 2007 May; 316(5827):1046-50. PubMed ID: 17463247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans.
    Miller JG; Liu Y; Williams CW; Smith HE; O'Connell KF
    G3 (Bethesda); 2016 Jan; 6(3):709-20. PubMed ID: 26772748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cyclin E-Cdk2 temporally regulates centrosome assembly and establishment of polarity in Caenorhabditis elegans embryos.
    Cowan CR; Hyman AA
    Nat Cell Biol; 2006 Dec; 8(12):1441-7. PubMed ID: 17115027
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Drosophila Ana2 is a conserved centriole duplication factor.
    Stevens NR; Dobbelaere J; Brunk K; Franz A; Raff JW
    J Cell Biol; 2010 Feb; 188(3):313-23. PubMed ID: 20123993
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation.
    Dammermann A; Pemble H; Mitchell BJ; McLeod I; Yates JR; Kintner C; Desai AB; Oegema K
    Genes Dev; 2009 Sep; 23(17):2046-59. PubMed ID: 19656802
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PCMD-1 bridges the centrioles and the pericentriolar material scaffold in C. elegans.
    Stenzel L; Schreiner A; Zuccoli E; Üstüner S; Mehler J; Zanin E; Mikeladze-Dvali T
    Development; 2021 Oct; 148(20):. PubMed ID: 34545391
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular architecture of the C. elegans centriole.
    Woglar A; Pierron M; Schneider FZ; Jha K; Busso C; Gönczy P
    PLoS Biol; 2022 Sep; 20(9):e3001784. PubMed ID: 36107993
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction between the
    Bianchi S; Rogala KB; Dynes NJ; Hilbert M; Leidel SA; Steinmetz MO; Gönczy P; Vakonakis I
    Mol Biol Cell; 2018 Mar; 29(6):722-735. PubMed ID: 29367435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism limiting centrosome duplication to once per cell cycle.
    Tsou MF; Stearns T
    Nature; 2006 Aug; 442(7105):947-51. PubMed ID: 16862117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion.
    Graser S; Stierhof YD; Nigg EA
    J Cell Sci; 2007 Dec; 120(Pt 24):4321-31. PubMed ID: 18042621
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans.
    von Tobel L; Mikeladze-Dvali T; Delattre M; Balestra FR; Blanchoud S; Finger S; Knott G; Müller-Reichert T; Gönczy P
    PLoS Genet; 2014 Nov; 10(11):e1004777. PubMed ID: 25412110
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The C. elegans F-box proteins LIN-23 and SEL-10 antagonize centrosome duplication by regulating ZYG-1 levels.
    Peel N; Dougherty M; Goeres J; Liu Y; O'Connell KF
    J Cell Sci; 2012 Aug; 125(Pt 15):3535-44. PubMed ID: 22623721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein phosphatase 2A-SUR-6/B55 regulates centriole duplication in C. elegans by controlling the levels of centriole assembly factors.
    Song MH; Liu Y; Anderson DE; Jahng WJ; O'Connell KF
    Dev Cell; 2011 Apr; 20(4):563-71. PubMed ID: 21497766
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GFP-centrin as a marker for centriole dynamics in the human breast cancer cell line MCF-7.
    D'Assoro AB; Stivala F; Barrett S; Ferrigno G; Salisbury JL
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):103-10. PubMed ID: 11729945
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation.
    Rogala KB; Dynes NJ; Hatzopoulos GN; Yan J; Pong SK; Robinson CV; Deane CM; Gönczy P; Vakonakis I
    Elife; 2015 May; 4():e07410. PubMed ID: 26023830
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The puromycin-sensitive aminopeptidase PAM-1 is required for meiotic exit and anteroposterior polarity in the one-cell Caenorhabditis elegans embryo.
    Lyczak R; Zweier L; Group T; Murrow MA; Snyder C; Kulovitz L; Beatty A; Smith K; Bowerman B
    Development; 2006 Nov; 133(21):4281-92. PubMed ID: 17021038
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A dynamically interacting flexible loop assists oligomerisation of the Caenorhabditis elegans centriolar protein SAS-6.
    Busch JMC; Erat MC; Blank ID; Musgaard M; Biggin PC; Vakonakis I
    Sci Rep; 2019 Mar; 9(1):3526. PubMed ID: 30837637
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication.
    Puklowski A; Homsi Y; Keller D; May M; Chauhan S; Kossatz U; Grünwald V; Kubicka S; Pich A; Manns MP; Hoffmann I; Gönczy P; Malek NP
    Nat Cell Biol; 2011 Jul; 13(8):1004-9. PubMed ID: 21725316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The chromatin remodeling protein CHD-1 and the EFL-1/DPL-1 transcription factor cooperatively down regulate CDK-2 to control SAS-6 levels and centriole number.
    Iyer J; Gentry LK; Bergwell M; Smith A; Guagliardo S; Kropp PA; Sankaralingam P; Liu Y; Spooner E; Bowerman B; O'Connell KF
    PLoS Genet; 2022 Apr; 18(4):e1009799. PubMed ID: 35377871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Centrosomes promote timely mitotic entry in C. elegans embryos.
    Hachet V; Canard C; Gönczy P
    Dev Cell; 2007 Apr; 12(4):531-41. PubMed ID: 17419992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.