These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15665937)

  • 1. Mechanisms of regulation of erythropoiesis during hemolytic anemia.
    Zyuz'kov GN; Abramova EV; Dygai AM; Gol'dberg ED
    Bull Exp Biol Med; 2004 Oct; 138(4):334-7. PubMed ID: 15665937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in granulocytic hemopoietic stem and their mechanisms during hypoxia of different genesis.
    Zyuz'kov GN; Dygai AM; Gol'dberg ED
    Bull Exp Biol Med; 2005 Mar; 139(3):279-82. PubMed ID: 16027830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of the erythroid hemopoietic stem and their mechanisms during blood loss.
    Zyuzkov GN; Abramova EV; Dygai AM; Goldberg ED
    Bull Exp Biol Med; 2005 Jan; 139(1):27-31. PubMed ID: 16142268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of stem cell factor and its receptor c-kit mediates lodgment and acute expansion of hematopoietic cells in the murine spleen.
    Broudy VC; Lin NL; Priestley GV; Nocka K; Wolf NS
    Blood; 1996 Jul; 88(1):75-81. PubMed ID: 8704204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in bone and erythropoiesis in hemolytic anemia: comparative study in bled, phenylhydrazine-treated and Plasmodium-infected mice.
    Moreau R; Tshikudi Malu D; Dumais M; Dalko E; Gaudreault V; Roméro H; Martineau C; Kevorkova O; Dardon JS; Dodd EL; Bohle DS; Scorza T
    PLoS One; 2012; 7(9):e46101. PubMed ID: 23029401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of changes in the erythroid hemopoietic stem during hypoxias of different severity.
    Gol'dberg ED; Dygai AM; Zyuz'kov GN; Gur'yantseva LA; Suslov NI
    Bull Exp Biol Med; 2002 Aug; 134(2):122-5. PubMed ID: 12459830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adrenergic regulation of erythropoiesis during cytostatic-induced myelosuppressions.
    Skurikhin EG; Pershina OV; Minakova MY; Ermakova NN; Firsova TV; Dygai AM; Gol'dberg ED
    Bull Exp Biol Med; 2008 Oct; 146(4):405-10. PubMed ID: 19489307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogenetic Evaluation of Dysfunction in the Erythron System of Experimental Animals during Modeling of Iron Deficiency Anemia in the Gestation Period.
    Zhdanov VV; Udut EV; Sotnikova LS; Burmina YV; Miroshnichenko LA; Simanina EV; Polyakova TY; Zyuz'kov GN; Chaikovskii AV; Stavrova LA; Fedorova EP; Dygai AM
    Bull Exp Biol Med; 2016 Feb; 160(4):417-20. PubMed ID: 26902349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial lesions in reversible erythropoietic depression due to chloramphenicol.
    Firkin FC
    J Clin Invest; 1972 Aug; 51(8):2085-92. PubMed ID: 4341013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of humoral factors in the regulation of hemopoiesis during cytostatic-induced myelosuppression.
    Dygai AM; Zhdanov VV; Simanina EV; Gur'yantseva LA; Udut EV; Khrichkova TY; Kirienkova EV; Epstein OI; Gol'dberg ED
    Bull Exp Biol Med; 2003 Jun; 135(6):548-51. PubMed ID: 12937670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the levels of stem cells (CFU-s) and plaque-forming cells (PFC) in mice during chronic phenylhydrazine-induced hemolytic anemia.
    Kozlov VA; Zhuravkin IN; Coleman RM; Rencricca NJ
    J Exp Zool; 1980; 211(3):357-60. PubMed ID: 7400762
    [No Abstract]   [Full Text] [Related]  

  • 12. ROCK1 functions as a critical regulator of stress erythropoiesis and survival by regulating p53.
    Vemula S; Shi J; Mali RS; Ma P; Liu Y; Hanneman P; Koehler KR; Hashino E; Wei L; Kapur R
    Blood; 2012 Oct; 120(14):2868-78. PubMed ID: 22889758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splenic plaque-forming cells (PFC) and stem cells (CFU-s) during acute phenylhydrazine-induced enhanced erythropoiesis.
    Kozlov VA; Zhuravkin IN; Coleman RM; Rencricca NJ
    J Exp Zool; 1980 Aug; 213(2):199-203. PubMed ID: 7007567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of human recombinant erythropoietin on differentiation and distribution of erythroid progenitor cells on murine medullary and splenic erythropoiesis during hypoxia and post-hypoxia.
    Mide SM; Huygens P; Bozzini CE; Fernandez Pol JA
    In Vivo; 2001; 15(2):125-32. PubMed ID: 11317516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythroid accelerating activity of rat serum in early stage of drug induced hemolysis.
    Umenai T; Yokoyama M
    Tohoku J Exp Med; 1998 Nov; 186(3):181-91. PubMed ID: 10348214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress Erythropoiesis Model Systems.
    Bennett LF; Liao C; Paulson RF
    Methods Mol Biol; 2018; 1698():91-102. PubMed ID: 29076085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erthropoietic precursors in mice with phenylhydrazine-induced anemia.
    Hara H; Ogawa M
    Am J Hematol; 1976; 1(4):453-8. PubMed ID: 1008057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin remodeling gene SMARCA5 is dysregulated in primitive hematopoietic cells of acute leukemia.
    Stopka T; Zakova D; Fuchs O; Kubrova O; Blafkova J; Jelinek J; Necas E; Zivny J
    Leukemia; 2000 Jul; 14(7):1247-52. PubMed ID: 10914549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of in vivo murine erythropoietic response to sodium orthovanadate.
    Aguirre MV; Juaristi JA; Alvarez MA; Brandan NC
    Chem Biol Interact; 2005 Sep; 156(1):55-68. PubMed ID: 16137666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced erythroid cell and erythropoietin production in response to acute anemia in prion protein-deficient (Prnp-/-) mice.
    Zivny JH; Gelderman MP; Xu F; Piper J; Holada K; Simak J; Vostal JG
    Blood Cells Mol Dis; 2008; 40(3):302-7. PubMed ID: 17964827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.