These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 15666147)

  • 1. Fine measurement of ergosterol requirements for growth of Saccharomyces cerevisiae during alcoholic fermentation.
    Deytieux C; Mussard L; Biron MJ; Salmon JM
    Appl Microbiol Biotechnol; 2005 Aug; 68(2):266-71. PubMed ID: 15666147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations.
    Luparia V; Soubeyrand V; Berges T; Julien A; Salmon JM
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):25-32. PubMed ID: 14745520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess.
    Mantzouridou F; Naziri E; Tsimidou MZ
    J Agric Food Chem; 2009 Jul; 57(14):6189-98. PubMed ID: 19537785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: effect on fermentation kinetics.
    Rosenfeld E; Beauvoit B; Blondin B; Salmon JM
    Appl Environ Microbiol; 2003 Jan; 69(1):113-21. PubMed ID: 12513985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pleiotropic mutations in Saccharomyces cerevisiae affecting sterol uptake and metabolism.
    Lewis TL; Keesler GA; Fenner GP; Parks LW
    Yeast; 1988 Jun; 4(2):93-106. PubMed ID: 3059715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid nutrition of Saccharomyces cerevisiae in winemaking.
    Belviso S; Bardi L; Bartolini AB; Marzona M
    Can J Microbiol; 2004 Sep; 50(9):669-74. PubMed ID: 15644919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sterol uptake by anaerobically grown Saccharomyces cerevisiae.
    Youings A; Rose AH
    Yeast; 1989 Apr; 5 Spec No():S459-63. PubMed ID: 2665374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae.
    Maczek J; Junne S; Nowak P; Goetz P
    Bioprocess Biosyst Eng; 2006 Oct; 29(4):241-52. PubMed ID: 16838149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of micella containing solubilized sterols during rehydration of active dry yeasts improves their fermenting capacity.
    Soubeyrand V; Luparia V; Williams P; Doco T; Vernhet A; Ortiz-Julien A; Salmon JM
    J Agric Food Chem; 2005 Oct; 53(20):8025-32. PubMed ID: 16190666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat.
    Arneborg N; Høy CE; Jørgensen OB
    Yeast; 1995 Aug; 11(10):953-9. PubMed ID: 8533470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors involved in anaerobic growth of Saccharomyces cerevisiae.
    Ishtar Snoek IS; Yde Steensma H
    Yeast; 2007 Jan; 24(1):1-10. PubMed ID: 17192845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sterol alterations on nystatin sensitivity in Saccharomyces cerevisiae.
    Richman-Boytas CM; Parks LW
    Microbios; 1989; 59(239):101-11. PubMed ID: 2682140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel sterol transformations promoted by Saccharomyces cerevisiae strain GL7: evidence for 9 beta, 19-cyclopropyl to 9(11)-isomerization and for 14-demethylation to 8(14)-sterols.
    Venkatramesh M; Nes WD
    Arch Biochem Biophys; 1995 Dec; 324(1):189-99. PubMed ID: 7503554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ergosterol and phytosterols on wine alcoholic fermentation with
    Girardi-Piva G; Casalta E; Legras JL; Nidelet T; Pradal M; Macna F; Ferreira D; Ortiz-Julien A; Tesnière C; Galeote V; Mouret JR
    Front Microbiol; 2022; 13():966245. PubMed ID: 36160262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of fermentation conditions on specific activity of the enzymes alcohol and aldehyde dehydrogenase from yeasts.
    Mauricio JC; Ortega JM
    Microbios; 1993; 75(303):95-106. PubMed ID: 8412848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobiosis induces complex changes in sterol esterification pattern in the yeast Saccharomyces cerevisiae.
    Valachovic M; Hronská L; Hapala I
    FEMS Microbiol Lett; 2001 Apr; 197(1):41-5. PubMed ID: 11287144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae, a model to study sterol uptake and transport in eukaryotes.
    Reiner S; Micolod D; Schneiter R
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1186-8. PubMed ID: 16246078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of ergosterol in cell-free system of yeast.
    Nishino T; Hata S; Osumi T; Katsuki H
    J Biochem; 1980 Jul; 88(1):247-54. PubMed ID: 6997284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of oxygen consumption by yeast lees on the autolysis phenomenon during simulation of wine aging on lees.
    Fornairon-Bonnefond C; Salmon JM
    J Agric Food Chem; 2003 Apr; 51(9):2584-90. PubMed ID: 12696941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of sterol biosynthesis in Saccharomyces cerevisiae.
    Bĕhalová B; Bláhová M; Bĕhal V
    Folia Microbiol (Praha); 1994; 39(4):287-90. PubMed ID: 7729765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.