These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 15666208)
1. Transport of isoprenoid intermediates across chloroplast envelope membranes. Flügge UI; Gao W Plant Biol (Stuttg); 2005 Jan; 7(1):91-7. PubMed ID: 15666208 [TBL] [Abstract][Full Text] [Related]
2. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Wanke M; Skorupinska-Tudek K; Swiezewska E Acta Biochim Pol; 2001; 48(3):663-72. PubMed ID: 11833775 [TBL] [Abstract][Full Text] [Related]
3. Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Schwender J; Gemünden C; Lichtenthaler HK Planta; 2001 Feb; 212(3):416-23. PubMed ID: 11289606 [TBL] [Abstract][Full Text] [Related]
4. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Bick JA; Lange BM Arch Biochem Biophys; 2003 Jul; 415(2):146-54. PubMed ID: 12831836 [TBL] [Abstract][Full Text] [Related]
5. Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway. Nagata N; Suzuki M; Yoshida S; Muranaka T Planta; 2002 Dec; 216(2):345-50. PubMed ID: 12447549 [TBL] [Abstract][Full Text] [Related]
6. THE 1-DEOXY-D-XYLULOSE-5-PHOSPHATE PATHWAY OF ISOPRENOID BIOSYNTHESIS IN PLANTS. Lichtenthaler HK Annu Rev Plant Physiol Plant Mol Biol; 1999 Jun; 50():47-65. PubMed ID: 15012203 [TBL] [Abstract][Full Text] [Related]
7. Vgamma9/Vdelta2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid biosynthesis. Jomaa H; Feurle J; Lühs K; Kunzmann V; Tony HP; Herderich M; Wilhelm M FEMS Immunol Med Microbiol; 1999 Sep; 25(4):371-8. PubMed ID: 10497868 [TBL] [Abstract][Full Text] [Related]
8. A proposed mechanism for the reductive ring opening of the cyclodiphosphate MEcPP, a crucial transformation in the new DXP/MEP pathway to isoprenoids based on modeling studies and feeding experiments. Brandt W; Dessoy MA; Fulhorst M; Gao W; Zenk MH; Wessjohann LA Chembiochem; 2004 Mar; 5(3):311-23. PubMed ID: 14997523 [TBL] [Abstract][Full Text] [Related]
9. Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis. Okada K; Kasahara H; Yamaguchi S; Kawaide H; Kamiya Y; Nojiri H; Yamane H Plant Cell Physiol; 2008 Apr; 49(4):604-16. PubMed ID: 18303110 [TBL] [Abstract][Full Text] [Related]
10. Isoprenoid biosynthetic pathways as anti-infective drug targets. Rohdich F; Bacher A; Eisenreich W Biochem Soc Trans; 2005 Aug; 33(Pt 4):785-91. PubMed ID: 16042599 [TBL] [Abstract][Full Text] [Related]
11. Solute transporters as connecting elements between cytosol and plastid stroma. Weber AP Curr Opin Plant Biol; 2004 Jun; 7(3):247-53. PubMed ID: 15134744 [TBL] [Abstract][Full Text] [Related]
12. Role of the non-mevalonate pathway in indole alkaloid production by Catharanthus roseus hairy roots. Hong SB; Hughes EH; Shanks JV; San KY; Gibson SI Biotechnol Prog; 2003; 19(3):1105-8. PubMed ID: 12790690 [TBL] [Abstract][Full Text] [Related]
13. A new alternative non-mevalonate pathway for isoprenoid biosynthesis in eubacteria and plants. Paseshnichenko VA Biochemistry (Mosc); 1998 Feb; 63(2):139-48. PubMed ID: 9526105 [TBL] [Abstract][Full Text] [Related]
14. Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Hoeffler JF; Hemmerlin A; Grosdemange-Billiard C; Bach TJ; Rohmer M Biochem J; 2002 Sep; 366(Pt 2):573-83. PubMed ID: 12010124 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. Lichtenthaler HK; Schwender J; Disch A; Rohmer M FEBS Lett; 1997 Jan; 400(3):271-4. PubMed ID: 9009212 [TBL] [Abstract][Full Text] [Related]
16. Exceptionally high percentage of IPP synthesis by Ginkgo biloba IspH is mainly due to Phe residue in the active site. Shin BK; Kim M; Han J Phytochemistry; 2017 Apr; 136():9-14. PubMed ID: 28139297 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Enfissi EM; Fraser PD; Lois LM; Boronat A; Schuch W; Bramley PM Plant Biotechnol J; 2005 Jan; 3(1):17-27. PubMed ID: 17168896 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Lichtenthaler HK Photosynth Res; 2007 May; 92(2):163-79. PubMed ID: 17634750 [TBL] [Abstract][Full Text] [Related]
19. Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Mannen K; Matsumoto T; Takahashi S; Yamaguchi Y; Tsukagoshi M; Sano R; Suzuki H; Sakurai N; Shibata D; Koyama T; Nakayama T Biochem Biophys Res Commun; 2014 Jan; 443(2):768-74. PubMed ID: 24342623 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation. Zeidler J; Lichtenthaler HK Planta; 2001 Jun; 213(2):323-6. PubMed ID: 11469599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]