BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 15666966)

  • 21. The application of a recently isolated strain of Bacteroides (GB-124) to identify human sources of faecal pollution in a temperate river catchment.
    Ebdon J; Muniesa M; Taylor H
    Water Res; 2007 Aug; 41(16):3683-90. PubMed ID: 17275065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Enterococcus faecalis-infecting phages (enterophages) as markers of human fecal pollution in recreational waters.
    Santiago-Rodríguez TM; Dávila C; González J; Bonilla N; Marcos P; Urdaneta M; Cadete M; Monteiro S; Santos R; Domingo JS; Toranzos GA
    Water Res; 2010 Sep; 44(16):4716-25. PubMed ID: 20723963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbiological water quality along the Danube River: integrating data from two whole-river surveys and a transnational monitoring network.
    Kirschner AK; Kavka GG; Velimirov B; Mach RL; Sommer R; Farnleitner AH
    Water Res; 2009 Aug; 43(15):3673-84. PubMed ID: 19552934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bifidobacterial survival in surface water and implications for microbial source tracking.
    Ottoson JR
    Can J Microbiol; 2009 Jun; 55(6):642-7. PubMed ID: 19767833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection and source identification of faecal pollution in non-sewered catchment by means of host-specific molecular markers.
    Ahmed W; Powell D; Goonetilleke A; Gardner T
    Water Sci Technol; 2008; 58(3):579-86. PubMed ID: 18725724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between F-specific RNA phage genogroups, faecal pollution indicators and human adenoviruses in river water.
    Ogorzaly L; Tissier A; Bertrand I; Maul A; Gantzer C
    Water Res; 2009 Mar; 43(5):1257-64. PubMed ID: 19121532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of mussels as biosamplers for characterization of faecal pollution in coastal recreational waters.
    Roslev P; Bukh AS; Iversen L; Sønderbo H; Iversen N
    Water Sci Technol; 2010; 62(3):586-93. PubMed ID: 20706005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of microbial source tracking methods in a Gulf of Mexico field setting.
    Korajkic A; Badgley BD; Brownell MJ; Harwood VJ
    J Appl Microbiol; 2009 Nov; 107(5):1518-27. PubMed ID: 19457032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of faecal pollutants in Torrens and Patawalonga catchment waters in South Australia using faecal sterols.
    Suprihatin I; Fallowfield H; Bentham R; Cromar N
    Water Sci Technol; 2003; 47(7-8):283-9. PubMed ID: 12793691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating potential applications of faecal sterols in distinguishing sources of faecal contamination from mixed faecal samples.
    Shah VG; Dunstan RH; Geary PM; Coombes P; Roberts TK; Von Nagy-Felsobuki E
    Water Res; 2007 Aug; 41(16):3691-700. PubMed ID: 17614115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial source tracking: a forensic technique for microbial source identification?
    Stapleton CM; Wyer MD; Kay D; Crowther J; McDonald AT; Walters M; Gawler A; Hindle T
    J Environ Monit; 2007 May; 9(5):427-39. PubMed ID: 17492088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Faecal sterols determination in wastewater and surface water.
    Gilli G; Rovere R; Traversi D; Schilirò T; Pignata C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Oct; 843(1):120-4. PubMed ID: 16787764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of drinking water quality using indicator bacteria and bacteriophages.
    Méndez J; Audicana A; Cancer M; Isern A; Llaneza J; Moreno B; Navarro M; Tarancón ML; Valero F; Ribas F; Jofre J; Lucena F
    J Water Health; 2004 Sep; 2(3):201-14. PubMed ID: 15497816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of source tracking methods for application in spring water.
    Wicki M; Auckenthaler A; Felleisen R; Karabulut F; Niederhauser I; Tanner M; Baumgartner A
    J Water Health; 2015 Jun; 13(2):473-88. PubMed ID: 26042979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Population similarity analysis of indicator bacteria for source prediction of faecal pollution in a coastal lake.
    Ahmed W; Hargreaves M; Goonetilleke A; Katouli M
    Mar Pollut Bull; 2008 Aug; 56(8):1469-75. PubMed ID: 18561957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Water quality and microbiological status of the distribution system: traditional parameters and emerging parameters].
    Scoglio ME; Grillo OC; Munaò F; Di Pietro A; Squeri L
    Ann Ig; 1989; 1(5):1243-54. PubMed ID: 2483905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The emission potential of different land use patterns for the occurrence of coliphages in surface water.
    Franke C; Rechenburg A; Baumanns S; Willkomm M; Christoffels E; Exner M; Kistemann T
    Int J Hyg Environ Health; 2009 May; 212(3):338-45. PubMed ID: 18804417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of bacteriophages for monitoring the microbiological quality of sewage sludge.
    Mandilara G; Mavridou A; Lambiri M; Vatopoulos A; Rigas F
    Environ Technol; 2006 Apr; 27(4):367-75. PubMed ID: 16583821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial indicators and pathogens: removal, relationships and predictive capabilities in water reclamation facilities.
    Costán-Longares A; Montemayor M; Payán A; Méndez J; Jofre J; Mujeriego R; Lucena F
    Water Res; 2008 Nov; 42(17):4439-48. PubMed ID: 18762313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential persistence of F-specific RNA phage subgroups hinders their use as single tracers for faecal source tracking in surface water.
    Muniesa M; Payan A; Moce-Llivina L; Blanch AR; Jofre J
    Water Res; 2009 Apr; 43(6):1559-64. PubMed ID: 19147174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.